• Title/Summary/Keyword: Radiology science department

Search Result 2,933, Processing Time 0.034 seconds

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Analysis for Correlation of Standardized Uptake Value in Fusion Imaging Scanner (융합영상장비의 표준섭취계수 상관관계 분석)

  • Kim, Jin-Eui;Kim, Jung-Soo;Choi, Nam-Gil;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.593-601
    • /
    • 2018
  • Recently in nuclear medicine, to improve diagnostic value, SUV, semi-quantitative indicator used in PET-CT, is adopted in SPECT-CT. Therefore, this research analyzed correlation of $SUV_{max}$ of two scanners through phantom test, and evaluated possibility of clinical application. Radiopharmaceuticals ($^{18}F$, $^{99m}Tc$) were injected with the ratios of 8:1 and 4:1, considering background radioactivity, into the phantom manufactured with 6 globes of different sizes, and, based on clinical protocol, positive phases were acquired with PET-CT and SPECT-CT scanners, and interesting areas were divided into ROI and VOI, and $SUV_{max}$ of them were measured, and analyzed. Tests found out no statistically significant difference in $SUV_{max}$ measured with two scanners (P>0.05). Thus, $SUV_{max}$ of PET-CT and SPECT-CT had a certain correlation within significant levels, and were evaluated as the same. Accordingly, it seems that $SUV_{max}$ quantitative analysis using SPECT-CT can provide significant diagnostic information as the case of PET-CT.

Evaluation of the Radiation Dosage Flowing out of the Hot Cell During Synthesis of 18FDG (18FDG 합성시 핫셀장비 외부로 유출 방사선의 선량 평가)

  • Jung, Hongmoon;Cho, June ho;Jung, Jaeeun;Won, Doyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.365-369
    • /
    • 2013
  • Intravenous injection is administered with radioactive medical isotopes to detect disease on Positron Emission Tomography (PET). In this case, typically, $^{18}FDG$ (Fluorodeoxyglucose) is used as a radioactive medicine. Cassette equipment is needed to synthesize deoxyglucose with $^{18}F$, produced by medical cyclotron. Production of radioactive medicine creates a lot of radiation, thus Hot Cell is used to shield a secondary radiation. We measured the radiation dosage flowing out of the hot cell during synthesis of $^{18}FDG$ or distribution. The purpose of this study is to provide the information of radiation dosage regarding the occupational exposure that unintentionally occurs during the synthesis of $^{18}FDG$. In conclusion, we confirmed the radiation dosage out of the hot cell during the $^{18}FDG$ synthesis. Especially, we observed that the radiation flowed out through the lead window, attached as a view port. Thus, it is considered that the improvement of a lead window is necessary in order to decrease the occupational exposure during the $^{18}FDG$ synthesis.

Analysis of Exposure Dose According to Chest and Abdomen Combine CT Exam Method (CT 흉·복부 통합검사 시 선량분석)

  • Mo, KyeongHwan;Han, DongKyoon;Lim, HyunSoo;Jeon, WooJin
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.401-408
    • /
    • 2014
  • The purpose of this study is confirmed to usefulness between division exam and combine exam of chest and abdomen according to comparing chest and abdomen radiation dose of division exam and combine exam in CT exam method. This study was conducted on patients who were admitted to the E hospital from July 2013 to March 2014 underwent CT studies for the diagnosis of chest and abdomen disease. In study result, male dose were more higher than female dose according to gender analysis of exposure dose that combine exam effective dose were male $33.10{\pm}2.75mSv$, female $31.66{\pm}3.12mSv$ and chest exam effective dose were male $9.07{\pm}2.62mSv$, female $8.30{\pm}2.18mSv$(p<0.05). And, division exam dose and combine exam dose were similar in gender comparison (p>0.05). And, combine exam effective dose, only chest exam effective dose, only abdomen exam effective dose were more higher than DRL(Diagnostic Reference Level) in comparison of patient exposure dose with DRL (p<0.05). In conclusion, chest-abdomen combine exam dose and division exam dose were similar. The chest-abdomen combine study can be used as follow-up and emergency trauma patients. That study will be reduce exam time and the occurrence risk of side effect of the contrast medium.

The Fabrication and Evaluation of HgI2 Semiconductor Detector as High Energy X-ray Dosimeter Application (고에너지 X선 선량계 적용을 위한 TiO2 첨가된 요오드화수은 반도체 검출기 제작 및 평가)

  • Choi, Il Hong;Noh, Sung Jin;Park, Jung Eun;Park, Ji Koon;Kang, Sang Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.383-387
    • /
    • 2014
  • In this paper, for a new detection system development with the better accurate dose evaluation and beam distribution imaging using the small field irradiation of linear accelerator, the compound semiconductor based detection sensors were fabricated and the performance evaluation was investigated. The special particle-in-binder sedimentation was used for a large area film sensor fabrication. The detection properties for high energy x-rays were investigated from a dark current, an output current, a rising time, a falling time, and response delay measurement. The experimental results, the $TiO_2$ mixed $HgI_2$ sensor showed the best electrical characteristics than $PbI_2$, PbO, pure $HgI_2$. Linearity, repeatability, and accuracy tests from LINAC were tested, the $TiO_2$ mixed $HgI_2$ sensor showed the better performance than the commercially available dosimetry devices.

Study on the Effect of Smart Learning applied at a Radiationtherapy Subject on Self Directed Learning, Self Learning Efficacy, Learning Satisfaction of College Students (방사선과 학생의 스마트 학습법 적용이 자기 주도적 학습능력, 학업적 자기 효능감, 학습 만족도에 미치는 영향)

  • Shim, Jae-Goo;Kim, Yon-Min;Park, Soo-Jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.661-667
    • /
    • 2016
  • The purpose of this was to study and analyze smart learning the self directed learning, self efficacy, learning satisfaction about department of radiology in a college. For this study total students 102 in 3 classes were surveyed at the end of semester. The research data was analyzed using SPSS also self directed learning, self learning efficacy, learning satisfaction analyzed t-test, ANOVA and Pearson's correlation coefficient results were followings. First, Men is more higher than women in a self learning efficacy, self directed learning, learning satisfaction. Second, in a learning satisfaction smart learning ever heard in a first time group more satisfaction. Third, during the smart learning classes a students appeared a positive response. As a results, learning satisfaction will increase a learning when learners need a ability of self control planning and learning motivation by themselves in voluntarily and actively. Suggest to change a paradigm in a radiology classes so we have to improve a teaching skills this solution recommend is two way communication. In conclusion, smart learning applied for classes of college is meaningful as a new teaching, which can be change gradually learning satisfaction by teaching methods.

The Study on Filling Factor of Radiation Shielding Lead-free Sheet Via Screen Printing Method (스크린 프린팅 공법을 통한 방사선 무연 차폐 시트에 관한 연구)

  • Kang, Sang-Sik;Jeong, Ah-Rim;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.713-718
    • /
    • 2018
  • In many previous studies, monte carlo simulation is used to produce lead-free shielding sheet, and the possibility of radiation shielding capability and weight reduction is presented. But it is difficult to simulation for binder and micro-pores because of In fact it does not provide sufficient information necessary for the commercialization process. Therefore, in this paper, the results of radiation shielding capability corresponding to filling factor was presented by using the screen printing method to provide information on gel-paste required for the commercialization process. In this study, the geometric setup for evaluate of radiation shielding ability was designed to comply with IEC 61331-1:2014 and KS A 4025. In addition, radiation irradiation conditions were 100 kVp filtered with 2.0 mmAl total filtration was applied according to KS A 4021 standard. In this study, Pb $1270{\mu}m$, $BaSO_4$ $3035{\mu}m$, $Bi_2O_3$ $1849{\mu}m$ and $WO_3$ $2631{\mu}m$ were analyzed based on ten value layer. Additionally, the filling factor was analyzed as $BaSO_4$ 38.6%, $Bi_2O_3$ 27.1%, $WO_3$ 30.15%. However, in the case of applying low-temperature high-pressure molding in the future, it is expected that the radiation shielding capability can be sufficiently improved by reducing the porosity while increasing the filling factor.

A Study on the Usefulness of Copper Filter in Single X-ray Whole Spine Lateral using 3D Printer (단일조사 whole spine Lateral 검사에서 3D 프린터로 제작한 구리 필터 유용성 연구)

  • Kwon, Kyung-Tae;Yoon, Dayeon;Shin, Rae-Un;Han, Bong-Ju;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.899-906
    • /
    • 2020
  • The WSS lateral examination is important for diagnosing spinal disorders. Recently, long-length detectors for large-area diagnose have been popularized to effectively reduce the exposure dose and examination time. It can be applied very efficiently to examinations of patients with high risk of falls, children, and adolescents. However, since the image is acquired through a single irradiation, the volume of cervical vertebra is relatively smaller than the lumbar due to the geometrical anatomy of the spine. Therefore, this study intends to fabricate an additional filter using 3D printing technology and copper filament to obtain uniform image quality in the WSS lateral examination and to analyze the results. 3D printing technology is able to easily print a desired shape, so it is widely used in the entire industrial field, and recently, a copper filament has been developed to confirm the possibility as an additional filter. In the WSS lateral examination, CNR and SNR were excellently measured when the additional filter was applied, confirming the possibility of using the additional filter.

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

A Study on the Reduction of Exposure Dose and Contrast Improvement by Use of Heavy Elements Filter (X선 진단영역에서 중원소(Ho) 여과판 사용에 따른 피폭선량 감소와 대조도 개선에 관한 연구)

  • Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.23 no.1
    • /
    • pp.91-96
    • /
    • 2000
  • This work was on the reduction of exposure dose and contrast improvement by Use of Heavy Elements Filter From the result of experimental evaluation, it was found that the beam harding of X-ray was not showed in Ho and Gd, heavy elements filters, contrast to Cu and Al filters In which the harding showed. And the ratio of transit dose to surface dose and the load of X-ray tube increase in order of Al, Cu, Gd and Ho, respectively. The contrast of X-ray images using the intensifying screen and the input phosphor showed the higher value in order of Cu, Al, Gd and Ho. Therefore, in the case of using contrast media and phosphor in region of diagnostic radiology, X-ray image quality depends primarily on kVp and heavy elements filters.

  • PDF