• Title/Summary/Keyword: Radiology practice

Search Result 297, Processing Time 0.029 seconds

Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs

  • Ue-Hwan Kim;Moon Young Kim;Eun-Ah Park;Whal Lee;Woo-Hyun Lim;Hack-Lyoung Kim;Sohee Oh;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1918-1928
    • /
    • 2021
  • Objective: With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other related algorithms that were recently developed. Materials and Methods: We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification with neural networks (PPMnn). Results: The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001). Conclusion: The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the safe use of XCID in clinical practice.

Effects of a New Clinical Training Simulator for Dental Radiography using Augmented Reality on Self-efficacy, Interest in Learning, Flow, and Practice Satisfaction (증강현실형 치과방사선촬영 시뮬레이터의 개발 및 효과검증 : 자아효능감, 학습흥미도, 학습몰입도, 실습만족도를 중심으로)

  • Gu, Ja-Young;Lee, Jae-Gi
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1811-1817
    • /
    • 2018
  • The purpose of this study is to elucidate the effects of a new clinical training simulator for dental radiography using augmented reality (AR) on user learning context. To accomplish this purpose, we divided 217 dental hygiene students into two groups. The experimental group was presented with the new clinical training simulator for dental radiography using AR, and the control group was presented with task information using a textbook. The results showed that the experimental group presented the new clinical training simulator for dental radiography using AR had a higher level of self-efficacy, interest in learning, flow, and practice satisfaction compared with the control group shown the task information using a textbook. Therefore, the AR-based radiography simulator can be utilized in dental radiology practice education as an effective educational device.

Convergence study related to the development of new clinical training simulator for dental radiography based on augmented reality (증강현실 기반 치과방사선 임상시뮬레이터 개발과 관련된 융합 연구)

  • Gu, Ja-Young;Lee, Jae-Gi
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.161-167
    • /
    • 2018
  • A clinician's skills in a dental clinic are an important factor in removing the risk factors of patients. Although many universities have conducted educational programs, there has been a limitation on repeated practice because of the limited space and equipment. In dental radiography, there are various intraoral radiographic techniques. Since proficiency in radiography is an important factor in obtaining accurate radiographs, repeated practice and skill learning are important at the pre-clinical stage. However, the recent amendment of diagnostic radiation has caused difficulties in repeated practice on the human body. This study aims to develop a clinical simulator for intraoral radiography that enables repeated practice and self-directed learning without any restriction by utilizing the augmented reality technology to foster clinical skills for dental hygienist.

Study on image quality improvement using Non-Linear Look-Up Table (비선형 Look-Up Table을 통한 영상 화질 개선에 관한 연구)

  • Kim, Sun-Chil;Lee, Jun-Il
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 2002
  • The role of radiology department has been greatly increased in the past few years as the technology in the medical imaging devices improved and the introduction of PACS (Picture Archiving and Communications System) to the conventional film-based diagnostic structure is a truly remarkable factor to the medical history. In addition, the value of using digital information in medical imaging is highly expected to grow as the technology over the computer and the network improves. However, the current medical practice, using PACS is somewhat limited compared to the film-based conventional one due to a poor image quality. The image quality is the most important and inevitable factor in the PACS environment and it is one of the most necessary steps to more wide practice of digital imaging. The existing image quality control tools are limited in controlling images produced from the medical modalities, because they cannot display the real image changing status. Thus, the image quality is distorted and the ability to diagnosis becomes hindered compared to the one of the film-based practice. In addition, the workflow of the radiologist greatly increases; as every doctor has to perform his or her own image quality control every time they view images produced from the medical modalities. To resolve these kinds of problems and enhance current medical practice under the PACS environment, we have developed a program to display a better image quality by using the ROI optical density of the existing gray level values. When the LUT is used properly, small detailed regions, which cannot be seen by using the existing image quality controls are easily displayed and thus, greatly improves digital medical practice. The purpose of this study is to provide an easier medical practice to physicians, by applying the technology of converting the H-D curves of the analog film screen to the digital imaging technology and to preset image quality control values to each exposed body part, modality and group of physicians for a better and easier medical practice. We have asked to 5 well known professional physicians to compare image quality of the same set of exam by using the two different methods: existing image quality control and the LUT technology. As the result, the LUT technology was enormously favored over the existing image quality control method. All the physicians have pointed out the far more superiority of the LUT over the existing image quality control method and highly praised its ability to display small detailed regions, which cannot be displayed by existing image quality control tools. Two physicians expressed the necessity of presetting the LUT values for each exposed body part. Overall, the LUT technology yielded a great interest among the physicians and highly praised for its ability to overcome currently embedded problems of PACS. We strongly believe that the LUT technology can enhance the current medical practice and open a new beginning in the future medical imaging.

  • PDF

A Study on the Public Recognition Change on Radiation by Providing Education and Practice (방사선 교육 및 체험을 통한 일반인의 인식 변화에 대한 고찰)

  • Kang, Bo-Sun;Park, Soo-Jin;Lee, Hyo-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.27-32
    • /
    • 2008
  • The role of radiation application technologies and nuclear power is priceless for the recent life of human beings without regardless of nation and race. Nevertheless the advantages, there are lots of difficulties in planning and investigating in the nationwide nuclear related business or the research in Korea. Since the major obstacle is the misderstanding radiation itself by misleading knowleges on it, it is important to make public understand radiation correctly. The result of this research shows that the public recognition could be guided to be friendly and cooperative to the radiation technology by providing educations and experimental experience.

  • PDF

Broad Beam Transmission Properties of some Shielding Materials for Use in Diagnostic Radiology (진단영역 넓은 선속 X선 에너지에 대한 차폐물질의 투과 특성)

  • Jeong, Hoi-Woun;Kim, Jung-Min;Lin, Song-Shei
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.23-29
    • /
    • 2004
  • The application of analytical model(Archer et al. 1983) to shielding calculations in diagnostic radiology combined with measurements of the broad beam transmission properties of lead, steel, concrete, and plate glass for x-ray tube potential of 60-140 kVp using an x-ray inverter generator and total initial beam filtration sufficient to provide half-valve layer representative of those found in common practice and required by regulatory agencies. Our transmission measurements and numerical fits to the mathematical model of broad beam transmission(Archer et al. 1983) will assist medical or health physicist faced with the task of designing protective barriers for medical diagnostic x-ray facilities.

  • PDF

Absorbed and effective dose from newly developed cone beam computed tomography in Korea (최근 개발된 cone beam computed tomography의 흡수선량 및 유효선량 평가)

  • Lee, Jong-Nyeong;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.93-102
    • /
    • 2007
  • Purpose: Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absorbed and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Materials and Methods: Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposures. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Results: Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Conclusion: Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  • PDF

Anomalies of the clivus of interest in dental practice: A systematic review

  • McCartney, Troy E.;Mupparapu, Mel
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2021
  • Purpose: The clivus is a region in the anterior section of the occipital bone that is commonly imaged on large-volume cone-beam computed tomography (CBCT). There have been several reports of incidental clivus variations and certain pathological entities that have been attributed to the variations. This study aimed to evaluate the effects of these variations within the scope of dentistry. Materials and Methods: Medical databases (PubMed, Scopus, and Web of Science) were searched using a controlled vocabulary (clival anomalies, cone-beam CT, canalis basilaris medianus, fossa navicularis magna, clival variation). The search was limited to English language, humans, and studies published in the last 25 years. The articles were exported into RefWorks® and duplicates were removed. The remaining articles were screened and reviewed for supporting information on variations of the clivus on CBCT imaging. Results: Canalis basilaris medianus and fossa navicularis magna were the most common anomalies noted. Many of these variations were asymptomatic, with most patients unaware of the anomaly. In certain cases, associated pathologies ranged from developmental (Tornwaldt cyst), to acquired (recurrent meningitis). While no distinct pathognomonic aspects were noted, there were unique patterns of radiographic diagnosis and treatment modalities. Most patients had a normal course of follow-up. Conclusion: Interpretation of CBCT volumes is a skill every dentist must possess. When reviewing large-volume CBCT scans, the clinician should be able to distinguish pathology from normal anatomic variations within the skull base. The majority of clivus variations are asymptomatic and will remain undetected unless incidentally noted on radiographic examinations.

Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective (유방촬영술에서 인공지능의 적용: 알고리즘 개발 및 평가 관점)

  • Ki Hwan Kim;Sang Hyup Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.12-28
    • /
    • 2021
  • Mammography is the primary imaging modality for breast cancer detection; however, a high level of expertise is needed for its interpretation. To overcome this difficulty, artificial intelligence (AI) algorithms for breast cancer detection have recently been investigated. In this review, we describe the characteristics of AI algorithms compared to conventional computer-aided diagnosis software and share our thoughts on the best methods to develop and validate the algorithms. Additionally, several AI algorithms have introduced for triaging screening mammograms, breast density assessment, and prediction of breast cancer risk have been introduced. Finally, we emphasize the need for interest and guidance from radiologists regarding AI research in mammography, considering the possibility that AI will be introduced shortly into clinical practice.

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.