• Title/Summary/Keyword: Radiological parameters

Search Result 349, Processing Time 0.02 seconds

Preoperative Radiological Parameters to Predict Clinical and Radiological Outcomes after Laminoplasty

  • Lee, Su Hun;Son, Dong Wuk;Shin, Jun Jae;Ha, Yoon;Song, Geun Sung;Lee, Jun Seok;Lee, Sang Weon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.677-692
    • /
    • 2021
  • Many studies have focused on pre-operative sagittal alignment parameters which could predict poor clinical or radiological outcomes after laminoplasty. However, the influx of too many new factors causes confusion. This study reviewed sagittal alignment parameters, predictive of clinical or radiological outcomes, in the literature. Preoperative kyphotic alignment was initially proposed as a predictor of clinical outcomes. The clinical significance of the K-line and K-line variants also has been studied. Sagittal vertical axis, T1 slope (T1s), T1s-cervical lordosis (CL), anterolisthesis, local kyphosis, the longitudinal distance index, and range of motion were proposed to have relationships with clinical outcomes. The relationship between loss of cervical lordosis (LCL) and T1s has been widely studied, but controversy remains. Extension function, the ratio of CL to T1s (CL/T1s), and Sharma classification were recently proposed as LCL predictors. In predicting postoperative kyphosis, T1s cannot predict postoperative kyphosis, but a low CL/T1s ratio was associated with postoperative kyphosis.

Cardiac CT for Measurement of Right Ventricular Volume and Function in Comparison with Cardiac MRI: A Meta-Analysis

  • Jin Young Kim;Young Joo Suh;Kyunghwa Han;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.450-461
    • /
    • 2020
  • Objective: We performed a meta-analysis to evaluate the agreement of cardiac computed tomography (CT) with cardiac magnetic resonance imaging (CMRI) in the assessment of right ventricle (RV) volume and functional parameters. Materials and Methods: PubMed, EMBASE, and Cochrane library were systematically searched for studies that compared CT with CMRI as the reference standard for measurement of the following RV parameters: end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), or ejection fraction (EF). Meta-analytic methods were utilized to determine the pooled weighted bias, limits of agreement (LOA), and correlation coefficient (r) between CT and CMRI. Heterogeneity was also assessed. Subgroup analyses were performed based on the probable factors affecting measurement of RV volume: CT contrast protocol, number of CT slices, CT reconstruction interval, CT volumetry, and segmentation methods. Results: A total of 766 patients from 20 studies were included. Pooled bias and LOA were 3.1 mL (-5.7 to 11.8 mL), 3.6 mL (-4.0 to 11.2 mL), -0.4 mL (5.7 to 5.0 mL), and -1.8% (-5.7 to 2.2%) for EDV, ESV, SV, and EF, respectively. Pooled correlation coefficients were very strong for the RV parameters (r = 0.87-0.93). Heterogeneity was observed in the studies (I2 > 50%, p < 0.1). In the subgroup analysis, an RV-dedicated contrast protocol, ≥ 64 CT slices, CT volumetry with the Simpson's method, and inclusion of the papillary muscle and trabeculation had a lower pooled bias and narrower LOA. Conclusion: Cardiac CT accurately measures RV volume and function, with an acceptable range of bias and LOA and strong correlation with CMRI findings. The RV-dedicated CT contrast protocol, ≥ 64 CT slices, and use of the same CT volumetry method as CMRI can improve agreement with CMRI.

Real-time measurements and modeling of sodium combustion aerosol dynamics in test chamber to improve the evaluation of SFR containment aerosol behaviour

  • Usha Pujala;Amit Kumar;Subramanian Venkatesan;Sujatha Pavan Narayanam;Venkatraman Balasubramanian
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3483-3490
    • /
    • 2024
  • The initial size distribution and morphological parameters of sodium aerosols are critical in evaluating the accidental suspended aerosol behaviour in Sodium-cooled Fast Reactor (SFR) containment. Mass-based measurements were more familiar in characterizing the sodium aerosols. Real-time number size distribution measurements are carried out in this study. The sensitivity analysis of sodium aerosol effective density (ρe) in deriving the actual number size distributions from the measured Aerodynamic Particle Size Distributions (APSD) and predicting suspended aerosol dynamics is presented. Tests are conducted in a 1 m3 chamber at 47 ± 3% RH for different initial mass concentrations (M0) of 0.1, 1, and 2.9 g/m3. The initial APSDs measured just after the generation completions are observed to be polydisperse with the count median aerodynamic diameter (CMAD) < 1 ㎛. The literature reported ρe values of sodium aerosols, 2.27, 1.362, and 0.61 g/cm3 are used to derive mobility equivalent PSDs from APSD in each test. The real-time number concentration decay and size growth for four different PSDs are measured and compared with the estimate using nodal method-based code to ascertain the actual parameters. The validated parameters CMD = 0.66 ㎛, σg = 1.96, ρe = 1 g/cm3 and χ = 1 are used for improved estimation of sodium aerosol dynamics in Indian SFR containment with M0 = 4 g/m3 for severe accident scenarios.

Line Image Correction of the Positron Camera in the Secondary Beam Course of HIMAC

  • Iseki, Yasushi;Mizuno, Hideyuki;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Tomitani, Takehiro;Urakabe, Eriko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.195-198
    • /
    • 2002
  • A positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for verifying the ranges of irradiation beams in heavy-ion radiotherapy. Images obtained by a centroid calculation of photomultiplier outputs exhibit a distortion near the edge of the crystal plane in an Anger-type scintillation detector. The images of a $\^$68/Ge line source were detected and look-up tables were prepared for the position correction parameters. Asymmetry of the position distribution detected by the positron camera was prevented with this correction. As a result, a linear position response and a position resolution of 8.6 mm were obtained over a wide measurement field.

  • PDF

An Approach to Estimation of Radiological Source Term for a Severe Nuclear Accident using MELCOR code (MELCOR 코드를 이용한 원자력발전소 중대사고 방사선원항 평가 방법)

  • Han, Seok-Jung;Kim, Tae-Woon;Ahn, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.192-204
    • /
    • 2012
  • For a severe accident of nuclear power plant, an approach to estimation of the radiological source term using a severe accident code(MELCOR) has been proposed. Although the MELCOR code has a capability to estimate the radiological source term, it has been hardly utilized for the radiological consequence analysis mainly due to a lack of understanding on the relevant function employed in MELCOR and severe accident phenomena. In order to estimate the severe accident source term to be linked with the radiological consequence analysis, this study proposes 4-step procedure: (1) selection of plant condition leading to a severe accident(i.e., accident sequence), (2) analysis of the relevant severe accident code, (3) investigation of the code analysis results and post-processing, and (4) generation of radiological source term information for the consequence analysis. The feasibility study of the present approach to an early containment failure sequence caused by a fast station blackout(SBO) of a reference plant (OPR-1000), showed that while the MELCOR code has an integrated capability for severe accident and source term analysis, it has a large degree of uncertainty in quantifying the radiological source term. Key insights obtained from the present study were: (1) key parameters employed in a typical code for the consequence analysis(i.e., MACCS) could be generated by MELCOR code; (2) the MELOCR code simulation for an assessment of the selected accident sequence has a large degree of uncertainty in determining the accident scenario and severe accident phenomena; and (3) the generation of source term information for the consequence analysis relies on an expert opinion in both areas of severe accident analysis and consequence analysis. Nevertheless, the MELCOR code had a great advantage in estimating the radiological source term such as reflection of the current state of art in the area of severe accident and radiological source term.

Profile and Dose Distribution for Therapeutic Heavy Ion Beams

  • Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.211-213
    • /
    • 2002
  • The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like $\^$12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for $\^$12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived.

  • PDF

Efficacy Evaluation of Alpha/Beta Radioactivity Screening in Urine Samples using Liquid Scintillation Counting

  • Ki Hoon Kim;Jae Seok Kim;Won Il Jang;Seokwon Yoon
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Rapid screening for internal contamination by alpha- and beta-emitting radionuclides is essential in situations involving radiation workers or radiation accidents. This study focused on the use of urine samples and liquid scintillation counting to quickly and accurately assess contamination. Calibration of the alpha and beta detection areas ensured precise measurement results. The major radionuclides recommended for surveillance during accidents were also considered. This study evaluated the effectiveness of the method by examining various parameters, including the limit of detection, linearity, sensitivity, selectivity, accuracy, ruggedness, and blind test sample analysis. The liquid scintillation counting method is an effective tool for screening urinary samples to detect alpha- and beta-emitting radionuclides, particularly during radiation emergencies, despite some limitations in precision.

Age-Specific Thyroid Internal Dose Estimation for Koreans

  • Kwon, Tae-Eun;Yoon, Seokwon;Ha, Wi-Ho;Chung, Yoonsun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.170-177
    • /
    • 2021
  • Background: The International Commission on Radiological Protection is preparing to provide reference dose coefficients for environmental radioiodine intake based on newly developed age-specific biokinetic models. However, the biokinetics of iodine has been reported to be strongly dependent on the dietary intake of stable iodine; for example, the thyroidal uptake of iodine may be substantially lower in iodine-rich regions than in iodine-deficient regions. Therefore, this study attempted to establish a system of age-specific thyroid dose estimation for South Koreans, whose daily iodine intakes are significantly higher than that of the world population. Materials and Methods: Korean age-specific biokinetic parameters and thyroid masses were derived based on the previously developed Korean adult model and the Korean anatomical reference data for adults, respectively. This study complied with the principles used in the development of age-specific biokinetic models for world population and used the ratios of baseline values for each age group relative to the value for adults to derive age-specific values. Results and Discussion: Biokinetic model predictions based on the Korean age-specific parameters showed significant differences in iodine behaviors in the body compared to those predicted using the model for the world population. In particular, the Korean age-specific thyroid dose coefficients for 129I and 131I were considerably lower than those calculated for the world population (25%-76% of the values for the world population). Conclusion: These differences stress the need for Korean-specific internal dose assessments for infants and children, which can be achieved by using the data calculated in this study.

Proposed parameters of optimal central incisor positioning in orthodontic treatment planning: A systematic review

  • Sangalli, Linda;Dalessandri, Domenico;Bonetti, Stefano;Mandelli, Gualtiero;Visconti, Luca;Savoldi, Fabio
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.53-65
    • /
    • 2022
  • Objective: Planning of incisal position is crucial for optimal orthodontic treatment outcomes due to its consequences on facial esthetics and occlusion. A systematic summary of the proposed parameters is presented. Methods: Studies on Google Scholar©, PubMed©, and Cochrane Library, providing quantitative information on optimal central incisor position were included. Results: Upper incisors supero-inferior position (4-5 mm to upper lip, 67-73 mm to axial plane through pupils), antero-posterior position (3-4 mm to Nasion-A, 3-6 mm to A-Pogonion, 9-12 mm to true vertical line, 5 mm to A-projection, 9-10 mm to coronal plane through pupils), bucco-lingual angulation (4-7° to occlusal plane perpendicular on models, 20-22° to Nasion-A, 57-58° to upper occlusal plane, 16-20° to coronal plane through pupils, 108-110° to anterior-posterior nasal spine), mesio-distal angulation (5° to occlusal plane perpendicular on models). Lower incisors supero-inferior position (41-48 mm to soft-tissue mandibular plane), antero-posterior position (3-4 mm to Nasion-B, 1-3 mm to A-Pogonion, 12-15 mm to true vertical line, 6-8 mm to coronal plane through pupils), bucco-lingual angulation (1-4° to occlusal plane perpendicular on models, 87-94° to mandibular plane, 68° to Frankfurt plane, 22-25° to Nasion-B, 105° to occlusal plane, 64° to lower occlusal plane, 21° to A-Pogonion), mesio-distal angulation (2° to occlusal plane perpendicular on models). Conclusions: Although these findings can provide clinical guideline, they derive from heterogeneous studies in terms of subject characteristics and reference methods. Therefore, the optimal incisal position remains debatable.

Feasibility on Statistical Process Control Analysis of Delivery Quality Assurance in Helical Tomotherapy (토모테라피에서 선량품질보증 분석을 위한 통계적공정관리의 타당성)

  • Kyung Hwan, Chang
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.491-502
    • /
    • 2022
  • The purpose of this study was to retrospectively investigate the upper and lower control limits of treatment planning parameters using EBT film based delivery quality assurance (DQA) results and to analyze the results of statistical process control (SPC) in helical tomotherapy (HT). A total of 152 patients who passed or failed DQA results were retrospectively included in this study. Prostate (n = 66), rectal (n = 51), and large-field cancer patients, including lymph nodes (n = 35), were randomly selected. The absolute point dose difference (DD) and global gamma passing rate (GPR) were analyzed for all patients. Control charts were used to evaluate the upper and lower control limits (UCL and LCL) for all the assessed treatment planning parameters. Treatment planning parameters such as gantry period, leaf open time (LOT), pitch, field width, actual and planning modulation factor, treatment time, couch speed, and couch travel were analyzed to provide the optimal range using the DQA results. The classification and regression tree (CART) was used to predict the relative importance of variables in the DQA results from various treatment planning parameters. We confirmed that the proportion of patients with an LOT below 100 ms in the failure group was relatively higher than that in the passing group. SPC can detect QA failure prior to over dosimetric QA tolerance levels. The acceptable tolerance range of each planning parameter may assist in the prediction of DQA failures using the SPC tool in the future.