• Title/Summary/Keyword: Radiological Hazards Assessment

Search Result 9, Processing Time 0.018 seconds

Suggestion of Risk Assessment Methodology for Decommissioning of Nuclear Power Plant (원자력발전소 해체 위험도 평가 방법론 개발)

  • Park, ByeongIk;Kim, JuYoul;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.95-106
    • /
    • 2019
  • The decommissioning of nuclear power plants should be prepared by quantitative and qualitative risk assessment. Radiological and non-radiological hazards arising during decommissioning activities must be assessed to ensure the safety of decommissioning workers and the public. Decommissioning experiences by U.S. operators have mainly focused on deterministic risk assessment, which is standardized by the U.S. Nuclear Regulatory commission (NRC) and focuses only on the consequences of risk. However, the International Atomic Energy Agency (IAEA) has suggested an alternative to the deterministic approach, called the risk matrix technique. The risk matrix technique considers both the consequence and likelihood of risk. In this study, decommissioning stages, processes, and activities are organized under a work breakdown structure. Potential accidents in the decommissioning process of NPPs are analyzed using the composite risk matrix to assess both radiological and non-radiological hazards. The levels of risk for all potential accidents considered by U.S. NPP operators who have performed decommissioning were estimated based on their consequences and likelihood of events.

Assessment of Radiological Hazards in Some Foods Products Consumed by the Malian Population Using Gamma Spectrometry

  • Adama Coulibaly;David O. Kpeglo;Emmanuel O. Darko
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • Background: Food consumption is one of the most important routes for radionuclide intake for the public; therefore, there is the need to have a comprehensive understanding of the amount of radioactivity in food products. Consumption of radionuclide-contaminated food could increase potential health risks associated with exposure to radiation such as cancers. The present study aims to determine radioactivity levels in some food products (milk, rice, sugar, and wheat flour) consumed in Mali and to evaluate the radiological effect on the public health from these radionuclides. Materials and Methods: The health impact due to ingestion of radionuclides from these foods was evaluated by the determination of activity concentration of radionuclides 238U, 232Th, 40K, and 137Cs using gamma spectrometry system with high-purity germanium detector and radiological hazards index in 16 samples collected in some markets, mall, and shops of Bamako-Mali. Results and Discussion: The average activity concentrations were 9.8±0.6 Bq/kg for 238U, 8.7±0.5 Bq/kg for 232Th, 162.9±7.9 Bq/kg for 40K, and 0.0035±0.0005 Bq/kg for 137Cs. The mean values of radiological hazard parameters such as annual committed effective dose, internal hazard index, and risk assessment from this work were within the dose criteria limits given by international organizations (International Commission on Radiological Protection and United Nations Scientific Committee on the Effects of Atomic Radiation) and national standards. Conclusion: The results show low public exposure to radioactivity and associated radiological impact on public health. Nevertheless, this study stipulates vital data for future research and regulatory authorities in Mali.

Comprehensive Assessment on Risk Factors using Fuzzy Inference in Decommissioning Process (퍼지추론을 이용한 해체공정 중 리스크 요인의 통합 평가)

  • Lim, Hyeon Kyo;Kim, Hyunjung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.184-190
    • /
    • 2014
  • Decommissioning process of nuclear facilities consist of a sequence of problem solving activities, because there may exist not only working environments contaminated by radiological exposure but also industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard. Unfortunately, however, there are few workers who experienced decommissioning operations a lot in the past. As a solution, it is quite necessary to utilize experts' opinions for risk assessment in decommissioning process. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not yet. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps which can be classified into two activities, decontamination and dismantling, and on the other, a risk assessment structure was introduced. The whole model was inferred with Fuzzy theory and techniques, and a numerical example was appended for comprehension.

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Analysis of radioactivity levels and hazard assessment of black sand samples from Rashid area, Egypt

  • Abdel-Rahman, Mohamed A.E.;El-Mongy, Sayed A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1752-1757
    • /
    • 2017
  • The aim of this study is to evaluate the radioactivity levels and radiological impacts of representative black sand samples collected from different locations in the Rashid area, Egypt. These samples were prepared and then analyzed using the high-resolution gamma ray spectroscopy technique with a high-purity germanium detector. The activity concentration ($A_c$), minimum detectable activity, absorbed gamma dose rate, external hazard index ($H_{ex}$), annual effective dose rate equivalent, radium equivalent, as well as external and internal hazard index ($H_{ex}$ and $H_{in}$, respectively) were estimated based on the measured radionuclide concentration of the $^{238}U$($^{226}Ra$) and $^{232}Th$ decay chains and $^{40}K$. The activity concentrations of the $^{238}U$, $^{232}Th$ decay series and $^{40}K$ of these samples varied from $45.11{\pm}3.1Bq/kg$ to $252.38{\pm}34.3Bq/kg$, from $64.65{\pm}6.1Bq/kg$ to $579.84{\pm}53.1Bq/kg$, and from $403.36{\pm}20.8Bq/kg$ to $527.47{\pm}23.1Bq/kg$, respectively. The activity concentration of $^{232}Th$ in Sample 1 has the highest value compared to the other samples; this value is also higher than the worldwide mean range as reported by UNSCEAR 2000. The total absorbed gamma dose rate and the annual effective dose for these samples were found to vary from 81.19 nGy/h to 497.81 nGy/h and from $99.86{\mu}Sv/y$ to $612.31{\mu}Sv/y$, which are higher than the world average values of 59 nGy/h and $70{\mu}Sv/y$, respectively. The $H_{ex}$ values were also calculated to be 3.02, 0.47, 0.63, 0.87, 0.87, 0.51 and 0.91. It was found that the calculated value of $H_{ex}$ for Sample 1 is significantly higher than the international acceptable limit of <1. The results are tabulated, depicted, and discussed within national and international frameworks, levels, and approaches.

Radiometric examination of fertilizers and assessment of their health hazards, commonly used in Pakistan

  • Hannan Younis;Sumbilah Shafique;Zahida Ehsan;Aleena Ishfaq;Khurram Mehboob;Muhammad Ajaz;Abdullah Hidayat;Wazir Muhammad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2447-2453
    • /
    • 2023
  • The radioactivity concentrations of Naturally Occurring Radioactive Materials (NORM) i.e., 226Ra, 232Th, and 4K in various chemical fertilizers being used in the agricultural soil of Pakistan were determined utilizing gamma spectrometry by employing a High Purity Germanium (HPGe) detector. The radioactivity concentrations of 226Ra, 232Th, and 4K extended from 2.58 ± 0.8-265.7 ± 8.8 Bq kg-1, 1.53 ± 0.14-76.6 ± 1.07 Bq kg-1 and 36.5 ± 1.34-15606.7 ± 30.2 Bq kg-1 respectively. The radiological hazard parameters such as internal and external indices and annual effective dose rates were calculated, while excessive lifetime cancer risk factors for the indoor and outdoor areas were found in the range from 0.3×10-3 to 10.723×10-3 and 0.03×10-3 to 2.7948×10-3 of most fertilizers, however, some values were slightly higher than the UNSCEAR (The United Nations Scientific Committee on the Effects of Atomic Radiation) recommended values for potash-containing fertilizers such as MOP (Muriate of Potash).

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

Review of Unplanned Release at Foreign Nuclear Power Plants and Radiological Monitoring at Korean Power Plants (해외원전 비계획적 방출 및 한국의 환경감시 현황 분석)

  • Park, Soo-Chan;Ham, Baknoon;Kwon, Jang-Soon;Cho, Dong-Keun;Jeong, Jihye;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.1-15
    • /
    • 2018
  • Despite of safety issues related to radiological hazards, 31 countries around the world are operating more than 450 nuclear power plants (NPPs). To operate NPPs safely, safety regulations from radiation protection organizations were developed and adopted in many countries. However, many cases of radionuclide releases at foreign NPPs have been reported. Almost all commercial NPPs routinely release radioactive materials to the surrounding environments as liquid and gas phases under control. These releases are called 'planned releases' which are planned, regularly monitored, and well documented. Meanwhile, the releases focused in this review, called 'unplanned releases', are neither planned nor monitored by regulatory and/or protection organizations. NPPs are generally composed of various structures, systems and components (SSCs) for safety. Among them, the SSCs near reactors are closely related to safety of NPPs, and typically fabricated to comply with stringent requirements. However, some non-safety related SSCs such as underground pipes may be constructed only according to commercial standards, causing the leakage of radioactive fluids usually containing tritium ($^3H$). This paper discusses SSCs of NPPs and introduces several cases of unplanned releases at foreign NPPs. The current regulation on the environmental radiological surveillance and assessment around the NPPs in South Korea are also examined.

Assessment of radionuclides from coal-fired brick kilns on the outskirts of Dhaka city and the consequent hazards on human health and the environment

  • M.M. Mahfuz Siraz;M.D.A. Rakib;M.S. Alam;Jubair Al Mahmud;Md Bazlar Rashid;Mayeen Uddin Khandaker;Md. Shafiqul Islam;S. Yeasmin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2802-2811
    • /
    • 2023
  • In a first-of-its-kind study, terrestrial radionuclide concentrations were measured in 35 topsoil samples from the outskirts of Dhaka using HPGe gamma-ray spectrometry to assess the radiological consequences of such a vast number of brick kilns on the plant workers, general as well as dwelling environment. The range of activity concentrations of 226Ra, 232Th, and 40K is found at 19 ± 3.04 to 38 ± 4.94, 39 ± 5.85 to 57 ± 7.41, and (430 ± 51.60 to 570 ± 68.40) Bq/kg, respectively. 232Th and 40K concentrations were higher than the global averages. Bottom ash deposition in lowlands, fly ash buildup in soils, and the fallout of micro-particles are all probable causes of the elevated radioactivity levels. 137Cs was found in the sample, which indicates the migration of 137Cs from nuclear accidents or nuclear fallout, or the contamination of feed coal. Although the effective dose received by the general public was below the recommended dose limit but, most estimates of hazard parameters surpass their respective population weighted global averages, indicating that brick kiln workers and nearby residents are not safe due to prolonged exposures to terrestrial radiation. In addition, the soil around sampling sites is found to be unsuitable for agricultural purposes.