• Title/Summary/Keyword: Radiolabeled fatty acid

Search Result 1, Processing Time 0.018 seconds

Synthesis and biodistribution of 18F-labeled α-, β- and ω-fluorohexadecanoic acid

  • Lee, Yun-Sang;Kim, Young Joo;Cheon, Gi Jeong;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2018
  • ${\omega}-[^{18}F]$-Fluorohexadecanoic acid (FHA) has been used for imaging of fatty acid metabolism of myocardium. To increase retention of radiolabeled fatty acid by blocking ${\beta}$-oxidation, methyl branched analogues have been used. In this experiment, we tried to synthesize 18F-labeled ${\alpha}-$, ${\beta}-$ and ${\omega}-FHA$ for imaging of the myocardial fatty acid metabolism. We synthesized ${\alpha}-$, ${\beta}-$ and ${\omega}$-mesylated methyl hexadecanoates and labeled with $^{18}F$ by reacting with $[^{18}F]$TBAF in acetonitrile at $80^{\circ}C$ for 10 min. Methyl ester group was removed by 1 M NaOH at $80^{\circ}C$ for 5 min. The yields of ${\alpha}-[^{18}F]$ and ${\omega}-[^{18}F]FHA$ were 25.5 and 45.5%, respectively [EOS]. However, ${\beta}-[^{18}F]FHA$ was not labeled at all due to a fast elimination reaction. The biodistribution study in ICR-mice showed that ${\omega}-[^{18}F]FHA$ has higher myocardial uptake and lower liver uptake than ${\alpha}-[^{18}F]FHA$. The electron-withdrawing effect of fluorine at ${\alpha}-$ position is believed to be the major factor affecting the biodistribution.