• 제목/요약/키워드: Radioisotope labeling

검색결과 29건 처리시간 0.024초

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.103-112
    • /
    • 2017
  • The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

Development of Freeze-Dried DOTMP Kits for Labeling with 68Ga

  • Lim, Jae Cheong;Choi, Sang Mu;Cho, Eun Ha;Lee, So Young;Dho, So Hee;Kim, Soo Yong
    • 방사선산업학회지
    • /
    • 제9권2호
    • /
    • pp.63-68
    • /
    • 2015
  • Lyophilized DOTMP kits were prepared using DOTMP, ammonium acetate, and ascorbic acid. The $^{68}Ga$-DOTMP was prepared by incubating the kit dissolved in 0.5 ml of concentrated $^{68}Ga$ using NaCl method and 0.5 ml of DDW, at $100^{\circ}C$ for 7 min. The labeling yield was evaluated by two solvent systems of TLC. 1 MBq of concentrated $^{68}Ga$ was labeled with $0.8{\mu}g$ of DOTMP by high radiolabeling yield (>98%), which was determined by two TLC methods. The composition of the prepared freeze-dried vial is $400{\mu}g$ of DOTMP, 19.27 mg of ammonium acetate and 17.62 mg of ascorbic acid. ~555 MBq of $^{68}Ga$-DOTMP was prepared with excellent radiochemical purity (>98%) and it was stable for 4 hr at room temperature. In conclusion, Freeze-dried DOTMP kits for the convenient preparation of $^{68}Ga$-DOTMP have been developed. Availability of this kit is expected to stimulate the widespread use of $^{68}Ga$-DOTMP in the fields of nuclear medicine.

Preparation of iron oxide nanoparticle combined with radioisotope for molecular imaging

  • Park, Ji Yong;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제4권1호
    • /
    • pp.36-42
    • /
    • 2018
  • Molecular imaging refers to detect the biochemical process in living organisms at the cellular and molecular levels and to quantify them. Due to several advantages of nanomaterials, various molecular images using nanomaterials are being tried. Attempts have been made to combine nanoparticles, known as micro- or nanosized nanomaterials, with radioactive isotopes for molecular imaging probe. The radiolabeled nanoparticles will expend the molecular imaging due to nanoparticle's size-dependent nature. In particular, iron oxide nanoparticles can be used for magnetic resonance imaging, can be adjusted in size, easily functionalized, and biocompatible, making it a very good platform for molecular imaging. In addition, iron oxide nanoparticles may be the best example for a new approach to molecular imaging techniques. In this paper, we introduce various methods for preparation of iron oxide nanoparticle combined with radioisotope starting from various synthesis methods of iron oxide nanoparticles to utilize iron oxide nanoparticles as a platform for molecular imaging through radioactive labeling.

Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

  • Jang, Beom-Su;Lee, Joo-Sang;Rho, Jong Kook;Park, Sang Hyun
    • Toxicological Research
    • /
    • 제28권4호
    • /
    • pp.235-240
    • /
    • 2012
  • $^{99m}Tc$ tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a $^{99m}Tc$-tricarbonyl precursor with a low oxidation state (I). $^{99m}Tc(CO)_3(H_2O)_3^+$ was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of $^{99m}Tc$-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of $^{99m}Tc$-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of $^{99m}Tc$-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of $^{99m}Tc$ tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of $^{99m}Tc$-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of $^{99m}Tc$ tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a $^{99m}Tc$-tricarbonyl-based biomolecular imaging probe.

Simple measurement the chelator number of antibody conjugates by MALDI-TOF MS

  • Shin, Eunbi;Lee, Ji Woong;Lee, Kyo Chul;Shim, Jae Hoon;Cha, Sangwon;Kim, Jung Young
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.54-58
    • /
    • 2017
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) is one of the powerful methods that enable analysis of small molecules as well as large molecules up to about 500,000 Da without severe fragmentation. MALDI-TOF MS, thus, has been a very useful an analytical tool for the confirmation of synthetic molecules, probing PTMs, and identifying structures of a given protein. In recent nuclear medicine, MALDI-TOF MS liner ion mode helps researcher calculate the average number of chelator(or linkage) per an antibody conjugate, such as DOTA-(or DFO-) trastuzumab for labeling a medical radioisotope. This simple technique can be utilized to improve the labeling method and control the quality at the development of antibody-based radiopharmaceuticals, which is very effected to diagnosis and therapy for in vivo tumor cells, with radioisotopes like $^{89}Zr$, $^{64}Cu$, and 177Lu. To minimize the error, MALDI-TOF MS measurement is repeatedly performed for each sample in this study, and external calibration is carried out after data collection.

Development of bombesin peptide kit for prostate cancer diagnosis and treatment using 64Cu/177Lu.

  • Kim, Mi Hyun;Kim, Min Hwan;Kim, Kwang Il;Kim, Jung Young;Lee, Tae Sup;Kang, Joo Hyun;Lee, Kyo Chul;Lee, Yong Jin
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.59-64
    • /
    • 2017
  • It has been reported that $^{64}Cu$ was radiolabeled with bombesin (BBN) peptide binding to the gastrin releasing peptide receptor expressed in human prostate cancer cells (PC3), confirming tumor target efficacy in mouse model. In this study, we developed the kit for the diagnosis and treatment of prostate cancer that can be used clinically using bombesin peptide available of $^{64}Cu$ and $^{177}Lu$ radioisotope labeling. The NODAGA-galacto-BBN peptide containing the NODAGA chelator and galactose was dispensed into a sterilized glass vial and lyophilized to prepare a kit. The stability of the kit after long-term storage in the $4^{\circ}C$ cold chamber and the radiolabeling efficiency after $^{64}Cu$ or $^{177}Lu$ labeling were confirmed by thin layer chromatography. When labeling with $^{64}Cu$ at the initial stage of storage, labeling efficiency of NODAGA-galacto-BBN peptide kit was over 96%, labeling efficiency was over 90% when $^{177}Lu$ was labeled. At 11 months after storage, the radiolabeling efficiency of kit against $^{64}Cu$ and $^{177}Lu$ was each over 95% and 90%. The cell viability was significantly reduced in the $^{177}Lu$-NODAGA-galacto-BBN treated group compared with the control and $^{177}Lu$ alone treated group in clonogenic assay. In conclusion, the NODAGA-galacto-BBN kit prepared by the lyophilization showed high stability over time and high yield of radioisotope labeling. Also $^{177}Lu$-NODAGA-galacto-BBN confirmed high cytotoxicity to prostate cancer cells. Therefore, the NODAGA-galacto-bombesin kit is expected to be useful for the diagnosis and treatment of prostate cancer patients.

Consideration and factors for developing new radiopharmaceuticals

  • Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제6권1호
    • /
    • pp.46-52
    • /
    • 2020
  • Radiopharmaceuticals that can be consumed in specific disease site play a key role In order to diagnose and treat the diseases. In addition, radiopharmaceuticals can be used for diagnostic or therapeutic purposes depending on the type of the labeled radioactive isotope. Recently, theragnostic radiopharmaceuticals that can simultaneously diagnose and treat are developed. Therefore, the development of target-specific radiopharmaceuticals is a very important research topic in the field of molecular imaging and therapy. This review paper summarizes the basic considerations for the development of radiopharmaceuticals. For new researchers or students who are now beginning in the field of radiopharmaceuticals, we intend to assist in the development of radiopharmaceuticals by describing the definition of radiopharmaceuticals, the ideal radiopharmaceutical conditions, the considerations for developing new radiopharmaceuticals, the factors affecting the design of radiopharmaceuticals, the requirements of radioisotope labeling reactions, and finally the definition and importance of molar activity in radiopharmaceuticals.

Novel 99mTc(CO)3 Complexes with WAY-100635 Moiety for the Development of 5-HT1A Receptor lmaging Agent

  • Choi, Kang-Hyuk;Pyun, Mi-Sun;Hong, Young-Don;Choi, Sun-ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1107-1112
    • /
    • 2009
  • The aim of this study is to develop and synthesize $5-HT_{1A}$ receptor imaging agents with WAY-100635 moiety and $^{99m}Tc(CO)_3$ core. WAY-100635 is commonly known as $5-HT_{1A}$ antagonist and its labeled compound ([$^{11}C$] WAY-100635) has been used as effective radioligand for imaging brain $5-HT_{1A}$ receptors with PET(Positron Emission Tomography). However, there are several restrictions in using a radioisotope of C-11 and requires for more effective radioisotopes and ligands. In order to produce a structure most similar to WAY-100635, WAY-100635 derivatives containing a cysteine chelator were designed and confirmed by using in silico (Hyperchem). The novel compounds (7a, 7b, 7c) were prepared in five or 7 steps with yields of 16%, 36% and 42%, respectively and radiolabeled with $[^{99m}Tc(CO)_3(H_2O)_3]^{+}$. The labeling yield was 99% for all the newly synthesized compounds. [$^{99m}Tc(CO)_3$]- WAY-100635 derivatives show a neutral charge which were confirmed by paper electrophoresis.