• Title/Summary/Keyword: Radioactive source

Search Result 289, Processing Time 0.03 seconds

High Energy Resolution Alpha Spectrometer Using a Cryogenic Detector (저온검출기를 이용한 에너지 고 분해능 알파분광 구현)

  • Kim, M.S.;Lee, S.H.;Yoon, W.S.;Jang, Y.S.;Lee, S.J.;Kim, Y.H.;Lee, M.K.
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.3
    • /
    • pp.132-137
    • /
    • 2013
  • Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of alpha spectrometer using a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. A piece of gold foil of $2{\times}2{\times}0.05mm^3$ was glued to the paramagnetic temperature sensor made of sputtered Au:Er film to serve as an absorber for incident alpha particles. We performed experiments with 241Am source at cryogen free adiabatic demagnetization refrigerator (CF-ADR). A high energy resolution of 6.8 keV in FWHM was obtained for 5.5 MeV alpha particles.

Evaluation on the Radiological Shielding Design of a Hot Cell Facility (핫셀시설의 방사선 안전성 평가)

  • 조일제;국동학;구정회;정원명;유길성;이은표;박성원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • The hot cell facility for research activities related to the lithium reduction of spent fuel, which is designed to permit safe handling of source materials with radioactivity levels up to 1,385 TBq, is planned to be built. To meet this goal, the facility is designed to keep gamma and neutron radiation lower than the recommended dose-rate in normally occupied areas. The calculations peformed with QAD-CGGP and MCNP-4C are used to evaluate the proposed engineering design concepts that would provide acceptable dose-rates during a normal operation in hot cell facility. The maximum effective gamma dose-rates on the surfaces of the facility at operation area and at service area calculated by QAD-CGGP are estimated to be $2.10{\times}10^{-3}, 2.97{\times}10^{-3} and 1.01{\times}10{-1}$ mSv/h, respectively. And those calculated by MCNP-4C are $1.60{\times}10^{-3}, 2.99{\times}10^{-3} and 7.88{\times}10^{-2}$ mSv/h, respectively, The dose-rates contributed by neutrons are one order of magnitude less than that of gamma sources. Therefore, it is confirmed that the radiological design for hot cell facility satisfies the Korean criterion of 0.01 mSv/h for the operation area and 0.15 mSv/h for the service (maintenance) area.

  • PDF

Image Quality of a Rotating Compton Camera Evaluated by Using 4-D Monte Carlo Simulation Technique (4-D 전산모사 기법을 이용한 호전형 컴프턴 카메라의 영상 특성 평가)

  • Seo, Hee;Lee, Se-Hyung;Park, Jin-Hyung;Kim, Chan-Hyeong;Park, Sung-Ho;Lee, Ju-Hahn;Lee, Chun-Sik;Lee, Jae-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2009
  • A Compton camera, which is based on Compton kinematics, is a very promising gamma-ray imaging device in that it could overcome the limitations of the conventional gamma-ray imaging devices. In the present study, the image quality of a rotating Compton camera was evaluated by using 4-D Monte Carlo simulation technique and the applicability to nuclear industrial applications was examined. It was found that Compton images were significantly improved when the Compton camera rotates around a gamma-ray source. It was also found that the 3-D imaging capability of a Compton camera could enable us to accurately determine the 3-D location of radioactive contamination in a concrete wall for decommissioning purpose of nuclear facilities. The 4-D Monte Carlo simulation technique, which was applied to the Compton camera fields for the first time, could be also used to model the time-dependent geometry for various applications.

Radiological Risk Assessment for $^{99m}Tc$ Generator using Uncertainty Analysis (불확실성 분석을 이용한 $^{99m}Tc$ 발생기 사용의 방사선위험도 평가)

  • Jang, H.K.;Kim, J.Y.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • Recently, much attentions are paid to the risk associated with increased uses of medium size radiation sources in medical and industrial fields. In this study, radiation risks to the worker and to the general public due to $^{99m}Tc$ generator were assessed for both normal and accident conditions. Based on the event tree technique, exposure scenarios for various situations were derived. Uncertainty analysis based on the Monte-Carlo technique was applied to the risk assessment for workers and members of the public in the vicinity of the work place. In addition, sensitivity analysis was performed on each of the five independent input parameters to identify importance of the parameters with respect to the resulting risk. Because the frequencies of normal tasks are fat higher than those of accidents, the total risk associated with normal tasks were higher than the accident risk. The annual dose due to normal tasks were $0.6mSv\;y^{-1}$ for workers and $0.014mSv\;y^{-1}$ for public, while in accident conditions $3.96mSv\;y^{-1}\;and\;0.0016mSv\;y^{-1}$, respectively. Uncertainty range of accident risk was higher by 10 times than that of normal risk. Sensitivity analysis revealed that source strength, working distance and working time were crucial factors affecting risk. This risk analysis methodology and its results will contribute to establishment of risk-informed regulation for medium and large radioactive sources.

Technical Review on Thorium Breeding Cycle (토륨 핵연료 주기 기술동향)

  • Noh, Taewan
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.52-64
    • /
    • 2016
  • The production of nuclear energy from thorium which is non-fissile material was a main issue until the middle of 1970's, because of the thorium's abundance as energy resources, its capability of breeding fissile material U233, and the reduction of long-lived actinides. However, to use thorium as nuclear fuel, some obstacles such as the necessities of external neutron source and long-term neutron irradiation for effective breeding, and the production of high radioactive isotopes in the course of thorium breeding cycle should be overcome. The difficulties to resolve these cons of thorium cycle became the reason of interruption of the related researches in the middle of 1970's. But in the 21st century, the change of societal perspective regarding nuclear energy and the appearance of accelerator-driven nuclear reactor shift those cons into pros and rehabilitate the study of thorium. The high activity of thorium cycle turned out to be a good option as higher resistance and easier detectibility of nuclear proliferation and the employment of subcritical accelerator-driven reactor as external neutron sources is considered to enhance the nuclear safety. In this study we compare the thorium cycle with the currently-used uranium cycle and analyze the technical status and perspective of thorium researches which use accelerator-driven reactors.

A Research on the Economic Feasibility of Korean Nuclear Power under the Condition of Social Acceptance after Fukushima Accident (후쿠시마원전사고 이후 원전 경제성과 안전성(사회적 수용성)의 최적점 연구)

  • Kim, Dong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • Since the Fukushima nuclear power plant accident in March 2011, critical views on the increase in operation of nuclear power plants including the safety and the economic feasibility thereof have been expanding across the world. In these circumstances, we are to find out solutions to the controversial questions on whether nuclear power plants are economically more feasible than other energy sources, while the safety thereof is fully maintained. Thereby, nuclear power plants will play a key role as a sustainable energy source in the future as well as at present. To measure the social safety level that Korean people are actually feeling after the Fukushima accident, a method of cost-benefit analysis called the Contingent Valuation Method(CVM) was used, whereby we wanted to estimate the amount of expenses the general public would be willing to pay for the safety based on their acceptance rather than the social safety. As a result of calculating the trade-off value of the economic feasibility versus the safety in nuclear power plants through the survey thereon, it caused the nuclear power generation cost to be increased by 4.75 won/kWh. Reflecting this on the current power generation cost of 39.11 won/kWh would increase the cost to 43.86 won/kWh. It is thought that this potential cost is still more competitive than the coal-fired power generation cost of 67 won/kWh. This result will be available as a basic data for the 2nd Energy Basic Plan to be drawn up this year, presenting policy implications at the same time.

Quality Control of Dose Calibrator using 3D Printery (3D 프린터를 이용한 Dose Calibrator의 품질관리)

  • Ryu, Chan-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.307-312
    • /
    • 2021
  • In nuclear medicine, radioactive isotope tracers are administered to the human body to obtain and evaluate disease morphological information and biological function information. Dose calibrator is a device used to measure the radioactivity of a single nuclide in medical institutions. Administration of the correct dose to the human body acts as an important factor in diagnosis and treatment, and measurement through a dose calibrator before administration is the most important factor. Dose calibrator performs daily quality control after installation in each medical institution. Quality control is a means of guaranteeing quality control after installation, and is essential for improving the quality of treatment and promoting patient safety. Therefore, accurate and standardized performance evaluation methods should be established. In this study, 3D printing was used for quantitative evaluation of quality control by increasing the accuracy and standardization of quality control. When the 3D printer was installed and reproducibility was tested, the error range of the expected value and reading value decreased by 0.302% in the F-18 nuclide and 0.09% in the 99mTc-pertechnate nuclide than when the 3D printer was installed. The error rate for other nuclides was also found to have a low error rate for reproducibility tests when 3D printing was installed.

High Dose Rate Interstitial Brachytherapy in Soft Tissue Sarcomas : Technical Aspect (연부조직종양에서 고선량율 조직내 방사선치료: 기술적 측면에서의 고찰)

  • Chun Mison;Kang Seunghee;Kim Byoung-Suck;Oh Young-Taek
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Purpose : To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy Materials and Methods : Between May 1995 and Dec. 1997, ten patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1 ~l.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of high dose rate, iridium-192 implant which delivered 12~15 Gy to 1 cm distance from the center of source axis with 2~2.5 Gy/fraction, twice a day, starting on 6th day after the surgery, Within one month after the surgery, total dose of 50~55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. Results : All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12~41 months), no local recurrences were observed. And there was no severe form of chronic complication (RTOGIEORTC grade 3 or 4). Conclusion : The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  • PDF

Status of a national monitoring program for environmental radioactivity and investigation of artificial radionuclide concentrations (134Cs, 137Cs, 131I) in rivers and lakes (방사성물질 측정망 현황 및 하천·호소 내 인공방사성물질 (134Cs, 137Cs, 131I) 조사)

  • Kim, Jiyu;Jung, Hyun-ji;An, Mijeong;Hong, Jung-Ki;Kang, Taegu;Kang, Tae-Woo;Cho, Yoon-Hae;Han, Yeong-Un;Seol, Bitna;Kim, Wansuk;Kim, Kyunghyun
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.377-384
    • /
    • 2015
  • A survey of the artificial radionuclides in rivers and lakes was conducted to investigate their levels in surface water. Water samples were collected at 60 points and analyzed by gamma-ray spectrometry with a measurement time of 10,000 seconds for 134Cs, 137Cs, and 131I. The obained values were lower than MDA for all points, except one point for 131I that was 0.533±0.058 Bq/L. 131I is known as a radioactive material that occurs frequently in sewage treatment plants. Because it is often used for medical treatments and subject to spreading into the environment due to the excretion from the patients. For the point where 131I was detected, we conducted additional investigation on the upstream river point and the effluent points of nearby sewage treatment plant to find the source of 131I. 131I was not detected at the upstream points of one of the upstream sewage treatment plants but found at the downstream points with the level being 0.257±0.034 to 0.799±0.051 Bq/L, proving the sewage treatment plant was the 131Isource.

Development of Three-Dimensional Trajectory Model for Detecting Source Region of the Radioactive Materials Released into the Atmosphere (대기 누출 방사성물질 선원 위치 추적을 위한 3차원 궤적모델 개발)

  • Suh, Kyung-Suk;Park, Kihyun;Min, Byung-Il;Kim, Sora;Yang, Byung-Mo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Background: It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. Materials and methods: A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. Results and discussion: A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. Conclusion: The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.