• 제목/요약/키워드: Radioactive release

검색결과 208건 처리시간 0.02초

Post Closure Long Term Safely of the Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장 불량 용기 발생 시나리오에 대한 폐쇄후 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제2권2호
    • /
    • pp.105-112
    • /
    • 2004
  • A waste container, one of the key components of a multi-barrier system in a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic medium and the swelling pressure of the bentonite buffer. Also, it delays potential release of radionuclides for a certain period of time, before it is corroded by intruding impurities. Even though the material of a waste container is carefully chosen and its manufacturing processes are under quality assurance processes, there is a possibility of initial defects in a waste container during manufacturing. Also, during the deposition of a waste container in a repository, there is a chance of an incident affecting the integrity of a waste container. In this study, the appropriate Features, Events, and Processes(FEP's) to describe these incidents and the associated scenario on radionuclide release from a container to the biosphere are developed. Then the total system performance assessment on the Initial waste Container Failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set used in this paper, the annual individual dose for the ICF scenario meets the Korean regulation on the post closure radiological safety of a repository.

  • PDF

A Deterministic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 결정론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae;Choi, Jongwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제10권3호
    • /
    • pp.171-188
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called "A-KRS," in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

A Study on the Methodology to Ensure Long-Term Durability of Low and Intermediate Level Radwaste Disposal Concrete Structure (${\cdot}$저준위 방사성폐기물 처분 콘크리트 구조물의 장기적 내구성 확보를 위한 방안 검토)

  • Kim Young-Ki;Lee Byung-Sik;Lee Yong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.211-220
    • /
    • 2005
  • The concrete structure is being considered for the main engineered barrier of low and intermediate level radwaste disposal facility. Concrete of low permeability can minimize infiltration of water and effectively prevent release of nuclide to ecosystem. But if concrete degrades, structural stability of disposal structure will decrease while permeability increase, resulting in increased possibility of nuclide release due to water infiltration. Therefore disposal concrete structure degradation shall be minimized to maintain capacity of nuclide isolation. The typical causes of concrete structure degradation are sulfide attack, reinforcement corrosion due to chloride attack, leaching of calcium hydroxide, alkali-aggregate reaction and repeated freezing-thawing. The common cause of these degradation processes is infiltration of water or adverse chemicals into concrete. Based on the study of these degradation characteristics and mechanisms of concrete structure, the methodology of design and service life evaluation of concrete structure as an engineered barrier are reviewed to ensure its long-term durability.

  • PDF

Glass Formulations for Vitrification of Low- and Intermediate-level Waste

  • Kim, Cheon-Woo;Park, Jong-Kil;Ha, Jong-Hyun;Song, Myung-Jae;Lee, Nel-Son;Kong, Peter-C.;Anderson, Gary-L.
    • Journal of the Korean Ceramic Society
    • /
    • 제40권10호
    • /
    • pp.936-942
    • /
    • 2003
  • In order to develop glass formulations for vitrifying Low-and Intermediate-Level radioactive Wastes (LILW) from nuclear power plants of Korea Hydro & Nuclear Power (KHNP) Co., Ltd., promising glass formulations were selected based on glass property model predictions for viscosity, electrical conductivity and leach resistance. Laboratory measurements were conducted to verify the model predictions. Based on the results, the models for electrical conductivity, US DOE 7-day Product Consistency Test (PCT) elemental release, and pH of PCT leachate are accurate for the LILW glass formulations. However, the model for viscosity was able to provide only qualitative results. A leachate conductivity test was conducted on several samples to estimate glass leach resistance. Test results from the leachate conductivity test were useful for comparison before PCT elemental release results were available. A glass formulation K11A meets all the KHNP glass property constraints, and use of this glass formulation on the pilot scale is recommended. Glass formulations K12A, K12B, and K12E meet nearly all of the processing constraints and may be suitable for additional testing. Based on the comparison between the measured and predicted glass properties, existing glass property models may be used to assist with the LILW glass formulation development.

A Review and Characteristics for Radioactive Effluents from the Nuclear Power Plants in Korea (국내원전의 방사성유출물 배출현황과 특성에 대한 고찰)

  • Son, Jung-Kwon;Kong, Tae-Young;Choi, Jong-Rak;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • 제37권3호
    • /
    • pp.138-145
    • /
    • 2012
  • As of the end of 2010, 21 nuclear power reactors were operating in Korea. Radioactive effluents from nuclear power plants (NPPs) had been increased continuously and the radioactivity of effluents released in 2010 was 547.12 TBq. From 2001 to 2010, the annual average radioactivity of gaseous and liquid effluents per reactor was 11.61 TBq for pressurized water reactor (PWR) plants and 118.12 TBq for PHWR (pressurized heavy water reactor) plants. Most of the radioactivity from gaseous and liquid effluents was came from $^3H$. Based on the results of release trends and analysis, effluents characteristics was suggested for the management of radioactive effluents from NPPs.

Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development (월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발)

  • Lim, Doo-Hyun;Kim, Jee-Yeon;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제9권2호
    • /
    • pp.99-105
    • /
    • 2011
  • An integrated model for groundwater flow and radionuclide transport analyses is being developed incorporating six underground silos, an excavated damaged zone (EDZ), and fractured host rock. The model considers each silo as an engineered barrier system (EBS) consisting of a waste zone comprising waste packages and disposal container, a buffer zone, and a concrete lining zone. The EDZ is the disturbed zone adjacent to silos and construction & operation tunnels. The heterogeneity of the fractured rock is represented by a heterogeneous flow field, evaluated from discrete fractures in the fractured host rock. Radionuclide migration through the EBS in silos and the fractured host rock is simulated on the established heterogeneous flow field. The current model enables the optimization of silo design and the quantification of the safety margin in terms of radionuclide release.

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Application of MARSSIM for Final Status Survey of the Decommissioning Project (해체사업의 최종현황조사를 위한 MARSSIM 적용)

  • Hong, Sang-Bum;Lee, Ki-Won;Park, Jin-Ho;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제9권2호
    • /
    • pp.107-111
    • /
    • 2011
  • The release of a site and building from regulatory control is the final stage of the decommissioning process. The MARSSIM (Multi-Agency Radiation Survey and Site Investigation Manual) provides overall framework for conducting data collection for a final status survey to demonstrate compliance with site closure requirements. The KAERI carried out establishing a final status survey by using the guidance provided in the MARSSIM for of a site and building of the Korea Research Reactor. The release criteria for a site and building were set up based on these results of the site specific release levels which were calculated by using RESRAD and RESRAD-Build codes. The survey design for a site and building was classified by using the survey dataset and potential contamination. The number of samples in each survey unit was calculated by through a statistical test using the collected data from a scoping and characterization survey. The results of the final status survey were satisfied the release criteria based on an evaluation of the measured data.

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제5권1호
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF

Population Dose Assessment for Radiation Emergency in Complex Terrain (복잡 지형에서의 주민선량 계산)

  • Yoon, Yea-Chang;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • 제12권2호
    • /
    • pp.28-36
    • /
    • 1987
  • Gaussian plume model is used to assess environmental dose for abnormal radioactive release in nuclear facility, but there has a problem to use it for complex terrain. In this report, MATTEW and WIND04 Codes which had been verified were used to calculate wind field in the complex terrain. Under the base of these codes principle, wind fields were obtained from the calculation of the finite difference approximation for advection-diffusion equations which satisfy the mass-conservative law. Particle concentrations and external doses were calculated by using PIC model which approximate the particle to radioactive cloud, and atmospheric diffusion of the particles from the random walk method. The results show that the adjusted wind fields and the distributions of the exposure dose vary with the topography of the complex terrain.

  • PDF