• Title/Summary/Keyword: Radioactive rays

Search Result 65, Processing Time 0.024 seconds

The Effects of Diagnostic Radiology Image on Radiopharmaceutical Testing (방사성의약품 검사 시 진단(CT)영상에 미치는 영향)

  • Lee, Eun-Hye;Lee, Ye-Seul;Kim, Gha-Jung;Choi, Jun-Gu
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2010
  • This research attempts to qualitatively evaluate the intensity change by radiopharmaceuticals and obtain computed tomography using phantom injected with various nuclide. Cylindrical phantom is used for comparing and analysing the effect on diagnosis image during radiopharmaceuticals inspection. Inside of the phantom, water is injected and computed tomography image is scanned. During nuclear medicine invitro, frequently used radiopharmaceuticals, $^{99m}TcO_4$ 20 mCi and $^{18}F$ 14 mCi, is diluted in the water phantom and scanned in the same method. Traverse image obtained by CT scan is divided into six traverse image in the same slice of each scanned image. CT-number(HU) value of 10 measuring point is measured in 2 cm interval based on the center of the phantom. Measured HU value, based on the water phantom, is compared with the image after injecting $^{99m}TcO_4$ and $^{18}F$. Average scale of water is 2.8~1.6 HU, $^{99m}TcO_4$ is 3.0~1.6 HU and $^{18}F$ is 1.2~0 HU. Average of water is $2.3{\pm}0.17$ HU, $^{99m}TcO_4$ is $2.2{\pm}0.85$ HU and F-18 is $0.7{\pm}0.95$ HU. Based on water, reduced value of about 0.1 HU and about 0.5 HU is acquired from $^{99m}TcO_4$ and F-18. Radionuclide used in nuclear medicine inspection utilizes 100~200 KeV energy and obtains image through scintillation camera and PET-CT utilizes 511 KeV positron annihilation energy to obtain image. What we learned from this research is that gamma rays from these energies used in CT scan for diagnosis purpose or radioactive therapy plan can change the intensity of the image. The nuclear medicine inspection for reducing the effect of emitted gamma ray diagnosis image should be obtained after a period of time considering half-life which would be reduced distortion or changed in image.

  • PDF

Surface Dose Evaluation According to the Environment Around the Patient after Nuclear Medicine Examination (핵의학 검사 후 환자의 주위 환경에 따른 표면 선량 평가)

  • Lee, Young-Hee;Park, Jae-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.943-948
    • /
    • 2021
  • The purpose of this study was to investigate changes in surface dose due to increased scattering of gamma rays from patients injected with 99mTc and 18F, which are radioactive isotopes, in close contact with materials with high atomic number such as the walls of the stable room. Prepare 99mTc and 18F by injecting 20 and 10 mCi respectively into the NEMA phantom, and then measuring the surface dose for 60 minutes by positioning the phantom at a height of 1 m above the surface, at a distance of 0, 5 and 10 cm from the wall, and at the same location as the phantom facing the wall. Each experiment was repeated five times for reproducibility of the experiment and one way analysis of variability (ANOVA) was performed for significance testing and Tukey was used as a post-test. The study found that surface doses of 220.268, 287.121, 243.957, and 226.272 mGy were measured at 99mTc, respectively, in the case of empty space and in the case of 0, 5 and 10 cm, while those of 18F were measured at 637.111, 724.469, 657.107, and 640.365 mGy, respectively. In order to reduce changes in surface dose depending on the patient's location while waiting, it is necessary to keep the distance from the ground or the wall where the patient is closely adhered to, or install an air mattress, etc., to prevent the scattered lines as much as possible, considering the scattered lines due to the wall etc. in future setup of the patient waiting room and safety room, and in addition to the examination, the external skin width may be reduced.

In the Treatment I-131, the Significance of the Research that the Patient's Discharge Dose and Treatment Ward can Affect a Patient's Kidney Function on the Significance of Various Factors (I-131 치료시 환자의 신장기능과 다양한 요인으로 의한 퇴원선량 및 치료병실 오염도의 유의성에 관한 연구)

  • Im, Kwang Seok;Choi, Hak Gi;Lee, Gi Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2013
  • Purpose: I-131 is a radioisotope widely used for thyroid gland treatments. The physical half life is 8.01 and characterized by emitting beta and gamma rays which is used in clinical practice for the purpose of acquiring treatment and images. In order to reduce the recurrence rate after surgery in high-risk thyroid cancer patients, the remaining thyroid tissue is either removed or the I-131 is used for treatment during relapse. In cases of using a high dosage of radioactive iodine requiring hospitalization, the patient is administered dosage in the hospital isolation ward over a certain period of time preventing I-131 exposure to others. By checking the radiation amount emitted from patients before discharge, the patients are discharged after checking whether they meet the legal standards (50 uSv/h). After patients are discharged from the hospital, the contamination level is checked in many parts of the ward before the next patients are hospitalized and when necessary, decontamination operations are performed. It is expected that there is exposure to radiation when measuring the ward contamination level and dose check emitted from patients at the time of discharge whereby the radiation exposure by health workers that come from the patients in this process is the main factor. This study analyzed the correlation between discharge dose of patients and ward contamination level through a variety of factors such as renal functions, gender, age, dosage, etc.). Materials and Method: The study was conducted on 151 patients who received high-dosage radioactive iodine treatment at Soon Chun Hyang University Hospital during the period between 8/1/2011~5/31/2012 (Male: Female: 31:120, $47.5{\pm}11.9$, average dosage of $138{\pm}22.4$ mCi). As various factors expected to influence the patient discharge dose & ward contamination such as the beds, floors, bathroom floors, and washbasins, the patient renal function (GFR), age, gender, dosage, and the correlation between the expected Tg & Tg-Tb expected to reflect the remaining tissue in patients were analyzed. Results: In terms of the discharge dose and GFR, a low correlation was shown in the patient discharge dose as the GFR was higher (p < 0.0001). When comparing the group with a dosage of over 150mCi and the group with a lower dosage, the lower dosage group showed a significantly lower discharge dose ($24{\pm}10.4uSv/h$ vs $28.7{\pm}11.8uSv/h$, p<0.05). Age, gender, Tg, Tg-Tb did not show a significant relationship with discharge dose (p> 0.05). The contamination level in each spot of the treatment ward showed no significant relationship with GFR, Tg, Tg-Tb, age, gender, and dosage (p>0.05 ). Conclusion: This study says that discharge of the dose in the patient's body is low in GFR higher and Dosage 150mCi under lower. There was no case of contamination of the treatment ward, depending on the dose and renal association. This suggests that patients' lifestyles or be affected by a variety of other factors.

  • PDF

A Study of Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET-CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Kim, Bit-Na;Cho, Suk Won;Lee, Juyoung;Lyu, Kwang Yeul;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to 99mTc emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radio technologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radio technologists. Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8cm$, mean weight: $65.9{\pm}1.4kg$). Radiation was measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150, and 200 cm, respectively. Then, all the procedure was given with a portable radiation shielding on the location of head, chest, and abdomen at the distance of 100, 150, and 200 cm and transmittance was calculated. In 10 cm, head ($105.40{\mu}Sv/h$) was the highest and foot($15.85{\mu}Sv/h$) was the lowest. In 200 cm, head, chest, and abdomen showed similar. On head, the measured dose rates were $9.56{\mu}Sv/h$, $5.23{\mu}Sv/h$, and $3.40{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.24{\mu}Sv/h$, $1.67{\mu}Sv/h$, and $1.27{\mu}Sv/h$ in 100, 150, and 200 cm on head. On chest, the measured dose rates were $8.54{\mu}Sv/h$, $4.90{\mu}Sv/h$, $3.44{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.27{\mu}Sv/h$, $1.34{\mu}Sv/h$, and $1.13{\mu}Sv/h$ in 100, 150, and 200 cm on chest. On abdomen, the measured dose rates were $9.83{\mu}Sv/h$, $5.15{\mu}Sv/h$, and $3.18{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.60{\mu}Sv/h$, $1.75{\mu}Sv/h$, and $1.23{\mu}Sv/h$ in 100, 150, and 200 cm on abdomen. Transmittance was increased as the distance was expanded. As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the technologists.

A Study to Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET/CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Cho, Seok-Won;Park, Hoon-Hee;Kim, Jung-Yul;Ban, Yung-Kak;Lim, Han-Sang;Oh, Ki-Beak;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Purpose: Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to $^{99m}Tc$ emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radiotechnologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radiotechnologists. Materials and Methods: Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8$ cm and mean weight: $65.9{\pm}1.4$ kg). Radiation were measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150 and 200 cm. Then, all the procedure was given with a portable radiation shielding on the location of head, chest and abdomen at the distance of 100, 150 and 200 cm and transmittance was calculated. Results: In 10 cm, head (105.40 ${\mu}Sv/h$) was the highest and foot (15.85 ${\mu}Sv/h$) was the lowest. In 200 cm, head, chest and abdomen showed similar. On head, the measured dose rates were 9.56 ${\mu}Sv/h$, 5.23 ${\mu}Sv/h$, and 3.40 ${\mu}Sv/h$ in 100, 150 and 200 cm respectively. When using shielder, it shows 2.24 ${\mu}Sv/h$, 1.67 ${\mu}Sv/h$, and 1.27 ${\mu}Sv/h$ in 100, 150 and 200 cm on head. On chest, the measured dose rates were 8.54 ${\mu}Sv/h$, 4.90 ${\mu}Sv/h$, 3.44 ${\mu}Sv/h$ in 100, 150 and 200 cm, respectively. When using shielder, it shows 2.27 ${\mu}Sv/h$, 1.34 ${\mu}Sv/h$, and 1.13 ${\mu}Sv/h$ in 100, 150 and 200 cm on chest. On abdomen, the measured dose rates were 9.83 ${\mu}Sv/h$, 5.15 ${\mu}Sv/h$ and 3.18 ${\mu}Sv/h$ in 100, 150 and 200cm respectively. When using shielder, it shows 2.60 ${\mu}Sv/h$, 1.75 ${\mu}Sv/h$ and 1.23 ${\mu}Sv/h$ in 100, 150 and 200 cm on abdomen. Transmittance was increased as the distance was expanded. Conclusion: As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the radiotechnologists.

  • PDF