• Title/Summary/Keyword: Radioactive rays

Search Result 65, Processing Time 0.027 seconds

A novel radioactive particle tracking algorithm based on deep rectifier neural network

  • Dam, Roos Sophia de Freitas;dos Santos, Marcelo Carvalho;do Desterro, Filipe Santana Moreira;Salgado, William Luna;Schirru, Roberto;Salgado, Cesar Marques
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2334-2340
    • /
    • 2021
  • Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive particle inside a volume of interest by means of a mathematical location algorithm. During the past decades, many algorithms have been developed including ones based on artificial intelligence techniques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of 662 keV. The test section was developed using MCNPX code, which is a mathematical code based on Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523 and 0.07653.

Comparison of the Correction Methods for Gamma Ray Attenuation in the Radioactive Waste Drum Assay (방사성폐기물드럼 핵종분석에서 감마선 감쇠보정 방법들의 비교 평가)

  • Ji Young-Yong;Ryu Young-Gerl;Kwak Kyoung-Kil;Kang Duck-Won;Kim Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • In the measurement of gamma rays emitted from the nuclide in the radioactive waste drum, to analyze the nuclide concentration accurately, it is necessary to use the proper calibration standards and to correct for the attenuation of the gamma rays. Two drums having a different density were used to analyze the nuclide concentration inside the drum in this study. After carrying out the system calibration, we measured the gamma rays emitted from the standard source inside the model drum with changing the distance between the drum and the detector. The measured values were corrected with the three kinds of gamma attenuation correction methode, as a results, the error was less than 10 % in the low density drum and less than 25 % in the high density drum. The measured activity in the short distance was more accruable than in the long distance. The transmission correction for the mass attenuation showed good results(very Low error) compared to the mean density and the differential peak correction method.

  • PDF

A Comparative Study of Branching Ratio of 167Yb Radioactive Isotope from Gamma-ray Spectrum Produced by 169Tm(p,3n)167Yb Reaction with 100-MeV Proton Beam (100-MeV 양성자 빔을 이용하여 169Tm(p,3n)167Yb 반응에 의해 생성된 167Yb 방사성동위원소에서 방출되는 감마선 스펙트럼 비교 연구)

  • Sam-Yol, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.953-960
    • /
    • 2022
  • The measurement of branching ratio of 167Yb radioactive isotopes from gamma-ray spectrum of 169Tm(p,3n)167Yb reaction were performed by using a 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC). The 167Yb isotope has a half-life of 17.5 minutes and decays to 169Tm. The gamma rays generated from the 167Yb isotope were measured using an HPGe detector gamma ray spectroscopy system. The energy calibration of the detector and the efficiency measurement of the detector were determined using a standard source. The gamma rays of known main energy (62.9, 106.2, 113.3, 143.5 and 176.3 keV) were measured. On the other hand, information about the intensity of the generated gamma rays is very inaccurate. Therefore, in this study, the decay strength of the main gamma rays was accurately measured. Overall, it was different from the previously known results, and in particular, it was found that the intensity of the main decay gamma ray, such as the 113.3 and 106.2 keV gamma ray, was overestimated, and it was found that the gamma ray, such as 62.9, 116.7 and 143.5 keV was underestimated. The present results are considered to be important information in the fields of nuclear fusion, astrophysics and nuclear physics in the future.

Design of a High Stable Measuring Circuit for Radioactive Pulses (방사선 펄스의 고안정 계측회로 설계)

  • 송재용;한주섭;천상규;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.577-580
    • /
    • 2000
  • The aim of this paper is to develop a high stable measuring device for radioactive pulses. The device consists of a high voltage supply unit using a fly-back converter principle, and a pulse detection unit for gamma-rays and neutrons. The high voltage supply unit designed can generate DC voltage up to 1,500v at 5V-input, and have a series voltage regulator to maintain the output voltage constantly, resulting in less than 1.63% of voltage regulation. The pulse detection parts consists of an active integrator, a pole-zero circuit, and a 3-stage amplifier of 60 dB, and its frequency bandwidth is from 37 Hz to 300 kHz. From the experimental results, it is confirmed that the measuring device can count at least 10,000 pulses in a second.

  • PDF

Radiation effect on the corrosion of disposal canister materials

  • Minsoo Lee;Junhyuk Jang;Jin Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.941-948
    • /
    • 2024
  • The effects of radiation on the corrosion of canister materials were investigated for the reliable disposal of high-level radioactive waste. The test specimens were gamma-irradiated at a very low dose rate of approximately 0.1 Gy/h for six and twelve months. The copper and cast iron species were less corroded when irradiated. It is hypothesized that gamma rays suppress the formation of lower-enthalpy species like metal oxides and activate reductive reactions. In contrast, it was difficult to evaluate the effect of radiation on the corrosion of titanium and stainless steel.

Development of a Portable Detection System for Simultaneous Measurements of Neutrons and Gamma Rays (중성자선과 감마선 동시측정이 가능한 휴대용 계측시스템 개발에 관한 연구)

  • Kim, Hui-Gyeong;Hong, Yong-Ho;Jung, Young-Seok;Kim, Jae-Hyun;Park, Sooyeun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.481-487
    • /
    • 2020
  • Radiation measurement technology has steadily improved and its usage is expanding in various industries such as nuclear medicine, security search, satellite, nondestructive testing, environmental industries and the domain of nuclear power plants (NPPs). Especially, the simultaneous measurements of gamma rays and neutrons can be even more critical for nuclear safety management of spent nuclear fuel and monitoring of the nuclear material. A semiconductor detector comprising cadmium, zinc, and tellurium (CZT) enables to detect gamma-rays due to the significant atomic weight of the elements via immediate neutron and gamma-ray detection. Semiconductor sensors might be used for nuclear safety management by monitoring nuclear materials and spent nuclear fuel with high spatial resolution as well as providing real-time measurements. We aim to introduce a portable nuclide-analysis device that enables the simultaneous measurements of neutrons and gamma rays using a CZT sensor. The detector has a high density and wide energy band gap, and thus exhibits highly sensitive physical characteristics and characteristics are required for performing neutron and gamma-ray detection. Portable nuclide-analysis device is used on NPP-decommissioning sites or the purpose of nuclear nonproliferation, it will rapidly detect the nuclear material and provide radioactive-material information. Eventually, portable nuclide-analysis device can reduce measurement time and economic costs by providing a basis for rational decision making.

The Analysis and Comparison of the Experiments for Electro-Decontamination about Radioactive Metal Wastes (방사성 금속 폐기물의 전해제염 실험 비교 분석)

  • 강동우;박광수;문길호;엄달선
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.196-201
    • /
    • 2003
  • Decontamination means every method that can drop the level of the radioactivities from the materials contaminated with them to the allowable one. In this paper, one of the decontamination methods, the electro-decontamination was described with lots of experiments. Two test specimens contaminated with alpha ray and beta ray respectively were used to compare the decontamination factors between two rays and many experiments were performed in every electrolyte with SUS and Carbon steel test specimens. Sulphuric acid, phosphoric acid, nitric acid, citric acid and oxalic acid were used as the electrolyte. Decontamination Factors (DF) could be compared and analyzed with different electrolyte, current intensities and time.

  • PDF

Fabrication of Fiber-optics Detector for Measuring Radioactive Waste (방사성 오염도 측정을 위한 광섬유 검출기 제작)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In this study, an optical fiber detector was constructed by using a Ce:GAGG scintillator, optical fiber, and photomultiplier. The single crystal size of the scintillator was set to $3{\times}3{\times}20mm^3$ after simulating the counting efficiency of gamma rays in the scintillator by using the MCNPX code. The constructed detector used the standard gamma ray sources $^{137}Cs$ and $^{133}Ba$ to measure radiation and analyze the spectral characteristics of gamma rays. The resulting trend curve showed excellent linearity with an R-squared value of 0.99741, and the detector characteristics were found to vary 2% or less with distance based on comparison with the MCNPX value. Furthermore, the spectroscopic analysis of the gamma ray energy from the single-ray and mixed-ray sources showed that $^{137}Cs$ had its peak energy at 662 keV, and $^{133}Ba$ had at 356 keV. It seems that if the fiber-optics detector is used, working hours and exposure of worker can be reduced.

A Study of Cesium Removal Using Prussian Blue-Alginate Beads (프러시안 블루-알지네이트 비드를 이용한 세슘 제거 연구)

  • So-on Park;Su-jung Min;Bum-kyoung Seo;Chang-hyun Roh;Sang-bum Hong
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2024
  • Accidents at nuclear facilities and nuclear power plants led to leaks of large amounts of radioactive substances. Of the various radioactive nuclides released, 137Cs are radioactive substances generated during the fission of uranium. Therefore, due to the high fission yield (6.09%), strong gamma rays, and a relatively long half-life (30 years), a rapid and efficient removal method and a study of adsorbents are needed. Accordingly, an adsorbent was prepared using Prussian blue (PB), a material that selectively adsorbs radioactive cesium. As a result of evaluating the adsorption performance with the prepared adsorbent, it was confirmed that 82% of the removal efficiency was obtained, and most of the cesium was rapidly adsorbed within 10 to 15 minutes. The purpose of this study was to adsorb cesium using the Prussian blue alginate bead and to compare the change in detection efficiency according to the amount of adsorbent added for quantitative evaluation. However, in this case, it is difficult to determine the detection efficiency using a standard source with the same conditions as the measurement sample, so the efficiency change of the HPGe detector according to the different heights of Prussian blue was calculated through MCNP simulation using certified standard materials (1 L, Marinelli beaker) for radioactivity measurement. It is expected to derive a relational equation that can calculate detection efficiency through an efficiency curve according to the volume of Prussian blue, quantitatively evaluate the activity at the same time as the adsorption of radioactive nuclides in actual contaminated water and use it in the field of nuclear facility operation and dismantling in the future.

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.