• 제목/요약/키워드: Radioactive concrete

검색결과 213건 처리시간 0.021초

A new proposal for controlled recycling of decommissioning concrete waste as part of engineered barriers of a radioactive waste repository and related comprehensive safety assessment

  • In Gyu Chang;Jae Hak Cheong
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.530-545
    • /
    • 2023
  • As an alternative to conventional management options for a lot of concrete waste from decommissioning of nuclear power plants, a set of scenarios for controlled recycling of decommissioning concrete waste as engineered barriers of a radioactive waste repository was proposed, and a comprehensive safety assessment model and framework covering both pre-and post-closure phases was newly developed. The new methodology was applied to a reference vault-type repository, and the ratios of derived concentration limits to unconditional clearance levels of eighteen radionuclides for controlled recycling were provided for three sets of dose criteria (0.01, 1, and 20 mSv/y for the pre-closure and 0.01 mSv/y for the post-closure phases). It turns out that decommissioning concrete waste whose concentration is much higher than the unconditional clearance level can be recycled even when the dose criterion 0.01 mSv/y is applied. Moreover, a case study on ABWR bio-shield shows that the fraction of recyclable concrete waste increases significantly by increasing the dose criterion for the radiation worker in the pre-closure phase or the duration of storage prior to recycling. The results of this study are expected to contribute to demonstrating the feasibility of controlled recycling of a lot of decommissioning concrete waste within nuclear sectors.

A Study of Immobilization Performance Requirements for Heterogeneous Radioactive Waste

  • Noh-Gyeom Jeong;Chang-Lak Kim
    • 방사성폐기물학회지
    • /
    • 제22권1호
    • /
    • pp.81-89
    • /
    • 2024
  • Highly radioactive waste is solidified to restrict leaching, retain its shape, and maintain its structural stability to prevent it from affecting humans and the environment as much as possible. This operation should be performed consistently regardless of whether the waste is homogeneous or heterogeneous. However, currently, there are no specific performance requirements for heterogeneous waste in Korea. This study reviewed domestic research results and the status of overseas applications, and proposed immobilization requirements for heterogeneous waste to be applied in Korea. IAEA safety standards, domestic laws, and waste acceptance criteria were reviewed. The status of heterogeneous waste immobilization in countries such as the United States, France, and Spain was reviewed. Most countries treat heterogeneous waste by encasing it in concrete, and impose immobilization requirements on this concrete. Based on these data, safety standards for the thickness, compressive strength, and diffusion limit of this concrete material were proposed as immobilization requirements for heterogeneous waste disposal in Korea. Quantitative values for the above requirements need to be derived through quantitative assessments based on the characteristics of domestic heterogeneous waste and disposal facilities.

원전 격납건물 라이너플레이트 배면 콘크리트 채움 여부 점검 기술 개발 (Development of Inspection Technique for Filling or Unfilling of Containment Liner Plate Backside Concrete in Nuclear Power Plant)

  • 이정석;김왕배;곽동열
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.37-41
    • /
    • 2020
  • The Nuclear containment building is a main safety-related structure that performs shielding and conservation functions to prevent highly radioactive materials from leakage to the outside environment in the case of various environmental conditions and postulated accidents. The containment building contains a reactor, steam generator, pressurizer, tank, reactor coolant system, auxiliary system and engineering safety system, and is designed so that highly radioactive materials above the limits specified in 10 CFR 100 do not escape to the outside environment in the case of LOCA(Loss of Coolant Accident) for instance. The containment metal liner plate(CLP) is a carbon steel plate with a nominal plate thickness of 6 mm, which functions as a mold for the wall and dome of the containment building when concrete is filled, fulfills airtightness to prevent leakage of seriously radioactive materials. In recent years, backside corrosion was found on the liner plate in some domestic nuclear power plants. The main cause of backside corrosion was unfilled concrete. In this paper, an inspection technique of assessing filling suitability for CLP backside concrete is developed. Results show that the validity of inspection technique for CLP backside concrete using vibration sensor is successfully verified.

Safety Assessment for the Landfill Disposal of Decommissioning Waste Solidified by Magnesium Potassium Phosphate Cement

  • Jeong, Jongtae;Baik, Min-Hoon;Lee, Jae-Kwang;Pyo, Jae-Young;Um, Wooyong;Heo, Jong
    • 방사성폐기물학회지
    • /
    • 제20권1호
    • /
    • pp.13-22
    • /
    • 2022
  • The decommissioning of a nuclear power plant generates large amounts of radioactive waste, which is of several types. Radioactive concrete powder is classified as low-level waste, which can be disposed of in a landfill. However, its safe disposal in a landfill requires that it be immobilized by solidification using cement. Herein, a safety assessment on the disposal of solidified radioactive concrete powder waste in a conceptual landfill site is performed using RESRAD. Furthermore, sensitivity analyses of certain selected input parameters are conducted to investigate their impact on exposure doses. The exposure doses are estimated, and the relative impact of each pathway on them during the disposal of this waste is assessed. The results of this study can be used to obtain information for designing a landfill site for the safe disposal of low-level radioactive waste generated from the decommissioning of a nuclear power plant.

Verification of the adequacy of domestic low-level radioactive waste grouping analysis using statistical methods

  • Lee, Dong-Ju;Woo, Hyunjong;Hong, Dae-Seok;Kim, Gi Yong;Oh, Sang-Hee;Seong, Wonjun;Im, Junhyuck;Yang, Jae Hwan
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2418-2426
    • /
    • 2022
  • The grouping analysis is a method guided by the Korea Radioactive Waste Agency for efficient analysis of radioactive waste for disposal. In this study, experiments to verify the adequacy of grouping analysis were conducted with radioactive soil, concrete, and dry active waste in similar environments. First, analysis results of the major radionuclide concentrations in individual waste samples were reviewed to evaluate whether wastes from similar environments correspond to a single waste stream. As a result, the soil and concrete waste were identified as a single waste stream because the distribution range of radionuclide concentrations was "within a factor of 10", the range that meet the criterion of the U.S. Nuclear Regulatory Commission for a single waste stream. On the other hand, the dry active waste was judged to correspond to distinct waste streams. Second, after analyzing the composite samples prepared by grouping the individual samples, the population means of the values of "composite sample analysis results/individual sample analysis results" were estimated at a 95% confidence level. The results showed that all evaluation values for soil and concrete waste were within the set reference values (0.1-10) when five-package and ten-package grouping analyses were conducted, verifying the adequacy of the grouping analysis.

저.중준위 방사성 폐기물의 고화처리 및 처분용 용기 개발을 위한 기초연구(1) (A Basical Study on the Preparing of Container Used for Treatment and Disposal of Low-and Intermediate-Level Radioactive Wastes(I))

  • 홍원표;정수영;황의환;조헌영;김철규
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.101-110
    • /
    • 1988
  • In order to improve the physical properties of concrete used for treatment and disposal container of low-and intermediate-level radioactive wastes, OPC (ordinary portland cement), ACPC (asphalt coated portland cement) and EPC(epoxy-portland cement) concrete specimens were prepared, and the physical properties of each concrete specimen were tested. According to the experimental results, EPC concrete showed better physical properties than ACPC and OPC concrete, however, ACPC concrete proved to be a best material for treatment and disposal container of radwastes in view of economic aspect and physical properties.

  • PDF