• 제목/요약/키워드: Radioactive aerosols

검색결과 23건 처리시간 0.019초

에어로졸 중화기의 나노 입자 하전 특성 (Nano Particle Charging Characteristics of Aerosol Charge Neutralizers)

  • 지준호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

Performing a multi-unit level-3 PSA with MACCS

  • Bixler, Nathan E.;Kim, Sung-yeop
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.386-392
    • /
    • 2021
  • MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.

環境汚染의 解決을 위한 綜合科學的 接近方法 (I) (An Interdisciplinary Approach for the Solution of Enviromental polution)

  • 신현덕
    • 한국표면공학회지
    • /
    • 제12권3호
    • /
    • pp.207-216
    • /
    • 1979
  • Environmental pollution or contaminations caused by various kinds of pollutants have become one of most serious problems of our time. Environ mental pollution is the unfavoralble alteration of our surroundings, through direct or indirect effects of changes in energy patterns, rediation levels, chemical and physical constitution and abundances of organisms. These changes may affect humans directly or through their supplies of water and of agicultural and other biological products, their physical objects or possessions, or their opportunities for recreation and appreciation of nature. Pollutants that meet the criteria of this definition of environmental pollution are numerous: gases (such as sulfur dioxide and nitrogen oxides) and paniculate matter (such as smoke particles, lead aerosols, and asbestos) in the atmosphere; pesticides and radioactive isotopes in the atmosphee and in waterways; sewage, organic. chemicals, and phosphates in water; solid wastes on land; excessive heating (thermal pollution) of rivers and lakes; and many others. Some of these pollutants are introduced into the environment naturally, others by human actions, and most in both ways. Our major concer is with environmental pollution resulting wholly or largely as a by-product of human activities, because these can be controlled most readily. Environmental pollution cannot be solved by science and technology alone. It should be handled by an interdisciplinary approach with combined methods of science and technology as wen as social science disciplines for the better solution of this critical problem. In this respect, introducing "Environmental Science," a new scientific approach for the solution of environmental problems, which is now widely accepted by most developed countries of the world will be very helpful for systematization of theoretical basis for a new scientific approach to environmental pollution. Environmental science is "the study of all systems of air, land, water, energy, and life that surround Man. It includes all sciences directed to the system-level of understanding of the environment, drawing especially upon such disciplines as meteorology, geophysics, oceanography, and ecology, and utilizing to the fullest knowledge and techniques developed in such fields as physics, chemistry, biology, mathematics and engineering as well as many social science disciplines, such as economics, such as economics, law, political science and public administration." The components of this discipline are not new, for they are drawn from existing areas of science within biology chemistry, physics, and geoscience. What is really new about environmental science, however, is it siewpoint - its orientation to global problems, its conception of the earth as a set of interlocking, interacting systems, and its interest in Man as a part of these systems.

  • PDF