• 제목/요약/키워드: Radioactive Impact

검색결과 189건 처리시간 0.04초

Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions

  • Yang, Hee-Chul;Lee, Jae-Hee;Kim, Jung-Guk;Yoo, Jae-Hyung;Kim, Joo-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.80-89
    • /
    • 2002
  • A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 90$0^{\circ}C$, under oxygen- deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm $O_2$). At high temperatures above 1,40$0^{\circ}C$, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 150$0^{\circ}C$ . Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd$_2$O$_3$, CoO and Cs$_2$O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration.

국내 원전 해체시 방사선환경영향평가 방안 (Preparation of Radiological Environmental Impact Assessment for the Decommissioning of Nuclear Power Plant in Korea)

  • 이상호;서형우;김창락
    • 방사성폐기물학회지
    • /
    • 제16권1호
    • /
    • pp.107-122
    • /
    • 2018
  • 국내 최초의 상업원전인 고리1호기가 2017년 6월에 영구 정지되었다. 고리1호기 해체를 시작으로 한국은 원전 해체시장에 본격적으로 발을 내딛는다. 원자력발전소 해체를 위해서는 고려해야 할 사항들이 많으며, 방사선환경영향평가 또한 그 중 하나이다. 방사선환경영향평가의 목적은 주변주민의 건강과 안전을 도모하기 위해, 해체 전 및 해체 중에 해당 시설에서 방출되는 방사성물질로부터 주변주민이 받는 피폭방사선량이 규제 제한치를 초과하지 않음을 확인하는 것이다. 현재 국내에는 해체시 방사선환경영향평가서를 작성하는데 필요한 세부지침이 미비한 상황으로, 다수의 원전 해체 경험을 보유한 미국의 해체시 방사선환경영향평가서를 비교 분석하여 국내 상황에 맞는 해체시 방사선환경영향평가 방안을 개발하였다.

Structural Evaluation on the Impact of a Radioisotope Package

  • Chung, Sung-Hwan;Lee, Heung-Young;Ku, Jeong-Hoe;Seo, Ki-Seog;Han, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.462-469
    • /
    • 1998
  • A package to transport high-level radioactive materials is required to withstand normal transport and hypothetical accident conditions pursuant to the IAEA and domestic regulations. The package should maintain the structural safety not to release radioactive material in any condition. The structural safety of the package has been evaluated by tests using proto-type or scaled-down models, however, the method by analysis is gradually utilized due to recent advancement of computers and computer codes. In this paper, to evaluate the structural safety of a radioisotope package of the KAERI, the three dimensional impact analyses under 9m free drop and 1m puncture were performed with an explicit finite-element code, the LS-DYNA3D code. The maximum stress intensity on each part was calculated and the structural safety of the package was evaluated in accordance with the regulations.

  • PDF

Requirements for the Transportation of Spent Nuclear Fuel (SNF) in Terms of Fuel Integrity and Data Needed According to

  • Noh, J.S.;Kim, Y.K.;Kim, T.W.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.115-116
    • /
    • 2017
  • For the safe transportation of SNF and licensing, the integrity of SNF should be evaluated carefully. Researches to obtain the data for SNF cladding properties, i.e. impact toughness, DBTT (hydride behavior) when evaluating transportation of SNF, shall be precisely implemented by simulating the condition of real SNF to the hilt, accordingly.

  • PDF

Influence of EDZ on the Safety of a Potential HLW Repository

  • 황용수;강철형
    • 방사성폐기물학회지
    • /
    • 제2권4호
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

Fuel Cycle Cost Modeling for the Generation IV SFR at the Pre-Conceptual Design Stage

  • Kim, Seong-Ho;Moon, Kee-Hwan;Kim, Young-In
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.51-52
    • /
    • 2009
  • Recently, several industrial countries using the fission energy have given attention to the Gen-IV SFR (sodium-cooled fast reactor) for achieving sustainable nuclear energy systems. In this context, an SFR is currently developed at the design concepts study stage in the Republic of Korea [Kim & Hahn 200909]. The sustainability of systems means economic, environment-friendly, proliferation-resistant, and safer systems. More specifically, this sustainability can be accomplished in terms of resource recycling and radioactive waste reduction. In the present work, the objective of fuel cycle cost modeling is to identify the impact of various conceptual options as a cost reduction measure for the Gen-IV SFR at the design concepts study stage. It facilitates the selection of several reasonable fuel cycle pathways for the future Gen-IV SFR from an economic viewpoint.

  • PDF

Unconditional Clearance Levels for Releasing Radioactive Materials Contaminated with Major Radionuclides from Regulatory Control

  • Cheong Jae Hak;Jeong Chan Woo;Park Won Jae
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.49-55
    • /
    • 2005
  • Unconditional clearance levels were derived for fifteen short-lived radionuclides. Due to the uncertainty of long-term radiological impact analysis, alpha emitting nuclides and nuclides with half-lives longer than 30 years (except for C-14) were excluded from the scope of this study. The candidate waste streams are solid wastes and waste oil generated from nuclear power reactors. The clearance levels were derived by generic assessment for enveloping scenarios, along with specific assessment for each detailed scenario such as landfill, incineration and recycling. The derived values lie in the range from 0.01 to 100 Bq/g.

  • PDF

Numerical estimation of errors in drop angle during drop tests of IP-Type metallic transport containers for radioactive materials

  • Lim, Jongmin;Yang, Yun Young;Lee, Ju-chan
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1878-1886
    • /
    • 2021
  • For industrial package (IP)-type transport containers for radioactive materials, a free drop test should be conducted under regulatory conditions. Owing to various uncertainties observed during the drop test, errors in drop angles inevitably occur. In IP-type metal transport containers in which the container directly impacts onto a rigid target without any shock absorbing materials, the error in the drop angle due to a slight misalignment makes a significant difference from the ideal drop. In particular, in a vertical drop, the error in the drop angle causes a strong secondary impact. In this paper, a numerical method is proposed to estimate the error in the drop angle occurring during the test. To determine this error, an optimization method accompanying a computational drop analysis is proposed, and a surrogate model is introduced to ensure calculation efficiency. Effectiveness of the proposed method is validated by performing the verification and comparison between the test and the analysis applied with the drop angle error.