• Title/Summary/Keyword: Radioactive Cesium

Search Result 129, Processing Time 0.019 seconds

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Development of Cesium-selective Paramagnetic Core Inorganic Composite Agent for Water Decontamination (수질오염 제염을 위한 세슘 선택성 상자성 코어 무기복합제염제 개발)

  • Seong Pyo Hong;Bo-Sun Kang
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Large amounts of liquid radioactive waste or radioactive contaminated water could be produced during the treatment of radiation accidents or during the dismantling and decontamination process of nuclear power plants. Since most of the decontamination agents to date are difficult to recover after adsorption of radioactive isotopes, their use in open environments such as rivers, reservoirs, or oceans is limited. In this study, as a radioactive decontamination agent that can overcome the current limitations when used in an open environment, a paramagnetic core inorganic composite (PMCIC) decomposite agent with high selectivity to cesium ions was developed. PMCore was prepared by synthesizing paramagnetic iron oxide nanoparticles, and inorganic crystals such as metal-ferrocyanide were conjugated to the surface so that PMCore could be selective to cesium ions. The developed PMCIC could be easily recovered from the water by magnetism and could adsorb up to 94 μM of Cs atoms per 1 g of PMCIC.

Fundamental study on volume reduction of cesium contaminated soil by using magnetic force-assisted selection pipe

  • Nishimura, Ryosei;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.26-31
    • /
    • 2021
  • Advanced classification of Cs contaminated soil by using a magnetic force-assisted selection pipe was investigated. A selection pipe is a device that sort particles depending on their particle size, based on the relationship between buoyancy, drag, and gravity force acting on the particles. Radioactive cesium is concentrated in small-particle size soil components with a large specific surface area. Hence, the volume of the Cs contaminated soil can be reduced by recycling the large-particle size soil components with low radioactive concentration. One of the problems of the selection pipe was that the radioactive concentration of the stayed soil in the selection pipe exceeds 8000 Bq/kg, which is the standard value of recycling of Cs contaminated soil, due to low classification accuracy. In this study, magnetic fields were applied to the lab-scale selection pipe from upper side to improve the classification accuracy and to reduce the radioactive concentration of the stayed soil.

Initial Release of Nuclides from Spent PWR Fuels

  • Kim, S. S.;K. S. Chun;Kim, Y. B.;Park, J. W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.238-244
    • /
    • 2004
  • The relationship between the leaching and gap inventory of spent fuel has been studied. When a specimen of J44H08 spent PWR fuel with 38 GWD/MTU has been leached in the synthetic granitic groundwater in Ar atmosphere, the released fraction of cesium was increased rapidly up to 0.7% at around 500 days and stayed below 0.8% until 3 years. This 0.7% of cesium might be released from the gap in this fuel. The measurement of gap inventory with C15I08 spent PWR fuel, having 35 GWD/MTU and 0.22% of fission gas release, was also determined near 0.6% for the cesium, which is a similar fraction of cesium released from the leaching experiment with J44H08 fuel. Its gap inventories of strontium and iodine were about 0.03 and less than 0.2% respectively. Respective fractions of cesium and strontium in grain boundary of C15I08 were 0.78, 0.09%.

  • PDF

A Study on the Decontamination Performance of Cesium by Soil Washing Process With Flocculating Agent (응집제를 적용한 토양세척 공정에서의 세슘 제염 성능 평가 연구)

  • Song, Jong Soon;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • Radioactive substances, especially $^{137}Cs$ discharged in the course of Nuclear Power Plant Accident or maintenance of power plants, cause contamination of the soil. For habitation of residents and reuse of industrial land, it is inevitably necessary to decontaminate the soil. This study examines a soil washing process that has actually been used for washing of radioactive-contaminated soil. The soil washing process uses a washing agent to weaken surface tension of the soil and cesium, separating cesium from the soil. In this study, in order to raise the efficiency of the process, a flocculating agent was added to the washing water to remove fine soil and cesium. The cesium concentrations before and after applying the flocculating agent to cesium solution were measured through ICP-OES. When using 0.1 g of J-AF flocculating agent in the experiment, the maximum Cs removal performance was approximately 88%; the minimum value was 67%. Species combinations between cesium and soil were predicted using Visual MINTEQ Code; the ability to reuse the washing water or not, and the removal rate of the fine soil, determined via measurement of the turbidity after applying the flocculating agent, were determined.

The Study on the Fixation of Cs-137 Radionuclide in Clinoptillolite - The Fixation of Cesium in Clinoptillolite - (Clinoptillolite에 의(依)한 Cs-137 핵종(核種) 흡착(吸着)에 관(關)한 연구(硏究))

  • Lee, Sang-Hoon;Sung, Nak-June;Park, Won-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1978
  • Investigation is carried out that low-level liquid radioactive wastes which is consisted of long half-life nuclides such as cesium can be treated by Korean clinoptillolite as a kind of zeolites. Column operation using a activated clinoptillolite shows good results in terms of break-through curves and comparing to clinoptillolite classified at WARD in U.S, Korean clinoptillolite shows a tailing phenomena longer than that of WARD. The fixation quantity of radioactivity in Korea clinoptillolite is to be about $75{\mu}Ci/100g$ using a $2.5{\times}10^{-3}{\mu}Ci/ml$ solution.

  • PDF

Long-term Dissolution Behavior of Cesium from Spent PWR Fuel in Contact with Compacted Bentonite under Synthetic Granitic Groundwater

  • Chun, Kwan-Sik;Kim, Seung-Soo;Bak, Seong-Jea;Park, Jongwon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.167-173
    • /
    • 2004
  • The amount of cesium released from the leaching of spent fuels in contact with and without the compacted bentonite bloc]t which was compacted as the density of $1.4g/\textrm{cm}^3$, up to 5.7 years were measured and the empirical formula of the fractional release rate of cesium were derived from these measured values. The empirical formulas show that the long-term release rate of cesium under a repository would become a constant, as about $3{\times}10_{-6}$ fraction/day, after a certain period. The cumulative fractions of cesium released from the spent fuel with bentonite and with copper and stainless steel sheets were steadily increased, but the fraction from bare fuel was rapidly increased and then sluggishly increased. However, the remained value except its gap inventory from the cumulative fraction of cesium released from bare fuel was almost very close to the others. This suggests that the initial release of cesium from bare fuel might be dependant on its gap inventory.

  • PDF

A Study of Cesium Removal Using Prussian Blue-Alginate Beads (프러시안 블루-알지네이트 비드를 이용한 세슘 제거 연구)

  • So-on Park;Su-jung Min;Bum-kyoung Seo;Chang-hyun Roh;Sang-bum Hong
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2024
  • Accidents at nuclear facilities and nuclear power plants led to leaks of large amounts of radioactive substances. Of the various radioactive nuclides released, 137Cs are radioactive substances generated during the fission of uranium. Therefore, due to the high fission yield (6.09%), strong gamma rays, and a relatively long half-life (30 years), a rapid and efficient removal method and a study of adsorbents are needed. Accordingly, an adsorbent was prepared using Prussian blue (PB), a material that selectively adsorbs radioactive cesium. As a result of evaluating the adsorption performance with the prepared adsorbent, it was confirmed that 82% of the removal efficiency was obtained, and most of the cesium was rapidly adsorbed within 10 to 15 minutes. The purpose of this study was to adsorb cesium using the Prussian blue alginate bead and to compare the change in detection efficiency according to the amount of adsorbent added for quantitative evaluation. However, in this case, it is difficult to determine the detection efficiency using a standard source with the same conditions as the measurement sample, so the efficiency change of the HPGe detector according to the different heights of Prussian blue was calculated through MCNP simulation using certified standard materials (1 L, Marinelli beaker) for radioactivity measurement. It is expected to derive a relational equation that can calculate detection efficiency through an efficiency curve according to the volume of Prussian blue, quantitatively evaluate the activity at the same time as the adsorption of radioactive nuclides in actual contaminated water and use it in the field of nuclear facility operation and dismantling in the future.