• Title/Summary/Keyword: Radioactive

Search Result 7,905, Processing Time 0.028 seconds

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

DEPTH AND LAYOUT OPTIMIZATIONS OF A RADIOACTIVE WASTE REPOSITORY IN A DISCONTINUOUS ROCK MASS BASED ON A THERMOMECHANICAL MODEL

  • Kim, Jhin-Wung;Koh, Yong-Kwon;Bae, Dae-Seok;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The objective of the present study is the depth and layout optimizations of a single layer, high level radioactive waste repository in a discontinuous rock mass with special joint set arrangements. A single layer repository model, considering variations in the repository depths, pitches, and tunnel spacings, is used to analyze the thermomechanical interaction behavior. It is assumed that the repository is constructed in saturated granite with joints; the PWR spent fuel in a disposal canister is installed in a deposition drift which is then sealed with compacted bentonite; and the backfill material is filled in the repository tunnel. The decay heat generated by the high level radioactive wastes governs the thermomechanical behavior of the near field rock mass of the repository. The temperature and displacement behavior of the repository is influenced more by the pitch variations than the tunnel spacing and repository depth. However, the stress behavior is influenced more by the repository depth variations than the pitch and tunnel spacing. For the final selection of the tunnel spacing, pitch, and repository depth, other aspects such as the nuclide migration through a groundwater flow path, construction costs, operation costs, and so on should be considered.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

Development of advanced rigorous two-step code system for evaluation of radioactive waste with high-resolution activation calculation

  • Kim, Do Hyun;Kim, Jiseok;Lee, Han Rim;Sun, Gwang Min;Shin, Chang Ho;Kim, Jong Kyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2011-2018
    • /
    • 2021
  • Nowadays, evaluation of amounts and distributions of radioactive waste is an important preparatory step in the process of nuclear reactor decommissioning. For tentative estimation of radioactive waste, a cell-based rigorous 2 step (R2S) method usually is used; however, a poor resolution caused by the averaged flux and spectrum in a cell is still a great challenge because of leading to underestimated or overestimated results. To overcome the poor resolution, several systems were introduced. Neither system, however, provides any function for evaluation of radioactive waste amount and distribution. Thus, it is additionally required to classify radioactive waste based on the results of activation calculation. In this study, the advanced R2S (AR2S) system was developed. To verify the performance of the system, its results for a verification problem were compared with those of the cell-based R2S method. The results showed good agreement, which is to say, within 2.0% relative error. Also, several characteristics of fine/coarse mesh were analyzed. To demonstrate the performance of the AR2S system, the radioactive waste from the Japan Power Demonstration Reactor (JPDR) was estimated, and the result indicated a high-resolution distribution. Therefore, it is expected that the AR2S system will prove useful for precise evaluation of radioactive waste.

An Approach to the Localization of Technology for a Transport and Storage Container for Very Low-Level Radioactive Liquid Waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Kim, Hee Reyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2022
  • The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

Repurposing a Spent Nuclear Fuel Cask for Disposal of Solid Intermediate Level Radioactive Waste From Decommissioning of a Nuclear Power Plant in Korea

  • Mah, Wonjune;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.365-369
    • /
    • 2022
  • Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate-level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.

Countermeasures for Management of Off-site Radioactive Wastes in the Event of a Major Accident at Nuclear Power Plants

  • Lee, Ji-Min;Hong, Dae Seok;Shin, Hyeong Ki;Kim, Hyun Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.339-347
    • /
    • 2022
  • Major accidents at nuclear power plants generate huge amounts of radioactive waste in a short period of time over a wide area outside the plant boundary. Therefore, extraordinary efforts are required for safe management of the waste. A well-established remediation plan including radioactive waste management that is prepared in advance will minimize the impact on the public and environment. In Korea, however, only limited plans exist to systematically manage this type of off-site radioactive waste generating event. In this study, we developed basic strategies for off-site radioactive waste management based on recommendations from the IAEA (International Atomic Energy Agency) and NCRP (National Council on Radiation Protection and Measurements), experiences from the Fukushima Daiichi accident in Japan, and a review of the national radioactive waste management system in Korea. These strategies included the assignment of roles and responsibilities, development of management methodologies, securement of storage capacities, preparation for the use of existing infrastructure, assurance of information transparency, and establishment of cooperative measures with international organizations.

Prediction of Radionuclide Inventory for Low- and Intermediate-Level Radioactive Waste by Considering Concentration Limit of Waste Package (처분방사능량제한치를 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 산정(안))

  • Jung, Kang Il;Kim, Min Seong;Jeong, Noh Gyeom;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.65-82
    • /
    • 2017
  • The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

Borehole Disposal Concept: A Proposed Option for Disposal of Spent Sealed Radioactive Sources in Tanzania (보어홀 처분 개념: 탄자니아의 폐밀봉선원 처분을 위한 제안)

  • Salehe, Mikidadi;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • Borehole Disposal Concept (BDC) was initiated by the South African Nuclear Energy Corporation (NECSA) with the view to improve the radioactive waste management practices in Africa. At a time when geological disposal of radioactive waste is being considered, the need to protect ground water from possible radioactive contamination and the investigation of radionuclides migration through soil and rocks of zone of aeration into ground water has becomes very imperative. This is why the Borehole Disposal Concept (BDC) is being suggested to address the problem. The concept involves the conditioning and emplacement of disused sealed radioactive sources in an engineered facility of a relatively narrow diameter borehole (260 mm). Tanzania is operating a Radioactive Waste Management Facility where a number of spent sealed radioactive sources with long and short half lives are stored. The activity of spent sealed radioactive sources range from (1E-6 to 8.8E+3 Ci). However, the long term disposal solution is still a problem. This study therefore proposing the country to adopt the BDC, since the repository requires limited land area and has a low probability of human intrusion due to the small footprint of the borehole.