• Title/Summary/Keyword: Radio-Frequency plasma

Search Result 227, Processing Time 0.03 seconds

Preparation of Metal Injection Molded Dental Components using Spheroidized Ti Powders by Plasma Process (플라즈마 공정으로 구상화된 티타늄 분말과 금속사출성형 공정을 이용한 치과용 부품 제조)

  • Gwak, Ji-Na;Yang, Sangsun;Yun, Jung-Yeul;Kim, Ju-Yong;Park, Seongjin;Kim, Hyun-Seung;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.467-473
    • /
    • 2013
  • This research presents a preparation method of dental components by metal injection molding process (MIM process) using titanium scrap. About $20{\mu}m$ sized spherical titanium powders for MIM process were successfully prepared by a novel dehydrogenation and spheroidization method using in-situ radio frequency thermal plasma treatment. The effects of MIM process parameters on the mechanical and biological properties of dental components were investigated and the optimum condition was obtained. After sintering at $1250^{\circ}C$ for 1 hour in vacuum, the hardness and the tensile strength of MIMed titanium components were 289 Hv and 584 MPa, respectively. Prepared titanium dental components were not cytotoxic and they showed a good cell proliferation property.

Water Repellent Finish of Polyester Fabric Using Carbontetrafluoride Plasma Treatment (4불화탄소 플라즈마처리에 의한 폴리에스테르 직물의 발수가공)

  • 모상영;이용운;김태년;천태일
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1994
  • In order to produce a water repellent surface on polyester fabric, samples were treated in the atmosphere of $CF_4$ glow discharge plasma. The samples used in the study were ployester fabric and poyester film. The purpose of film treatment is for the comparison of hydrophobicity with fabric sample at same treatment condition. Radio frequency(13.56MHz) generator was used as electric source and its in put power is 100 Watt. Water repellency was evaluated by contact angle measurement. Result obtained are as follows. 1) Fiber interstice of original fabric was ana lysed as 0.43$\mu$m, and this value was sufficiently ideal for making water repellent fabric. 2) The most favorable setting position of substrate was the center area between two electrodes. 3) Fabric contact angle was higher than film contact angle at same treatment condition, and its difference was more than 50${\circ}$. And it was incapalbe of fabric contact angle measurement when the film contact angle was less than 90${\circ}$. because the fabric is susceptible to absorption of water by the capillary effect. 4) Fabric contact angle can not revealed the precise defferences of surface hydrophobicity, however, the film contact angle showed the real hydrophobic nature. 5) It was not sufficient method to evaluate the hydrophobicity of fabric surface by merely measure of the water contact angle. 6) It showed high water repellent nature at 0.06 torr of $CF_4$ plasma gas pressure and duration of 45 seconds treatment, and it can not be anticipated more improved nature if the pressure and duration of treatment time were increased.

  • PDF

Low temperature growth of GaN on sapphire using remote plasma enhanced-ultrahigh vacuum chemical vapor deposition

  • Park, J.S.;Kim, M.H.;Lee, S.N.;Kim, K.K.;Yi, M.S.;Noh, D.Y.;Kim, H.G.;Park, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.85-99
    • /
    • 1998
  • A ultrahigh vacuum chemical vapor deposition(UHVCVD)/metalorganic chemical vapor deposition(MOMBE) system equipped with a radio frequency(RF)-plasma cell was employed to grow GaN layer on the sapphire at a low temperature. The x-ray photoelectron spectroscopy analysis of nitrogen composition on the nitridated sapphite surface indicated that a nitridation process is mostly affected by the RF power at low temperature. Atomic force microscope images of nitridated surface the protrusion density on the nitridated sapphire is dependent on the nitridation temperature. The crystallinity of GaN grown at $450^{\circ}C$ was found to be much improved when the sapphire was nitridated at low temperature prior to the GaN layer growth. Moreover, a strong photoluminescence spectrum of GaN grown by UHVCVD/MOMBE with a rf-nitrogen plasma was observed for the first time at room temperature.

  • PDF

Biological Evaluation of Bone Marrow-Derived Stem Cells onto Different Wettability by RT-PCR (역전사 중합효소 연쇄반응을 이용한 표면 적심성에 따른 골수유래 줄기세포의 생물학적 평가)

  • 김은정;박종수;김문석;조선행;이종문;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.218-224
    • /
    • 2004
  • The adhesion and proliferation of mammalian cells on polymeric biomaterials depend on the surface characteristics such as wettability, chemistry, charge and roughness. In order to recognize the correlation between the adhesion and proliferation of human bone marrow derived stem cells (BMSCs) and surface property, radio frequency generated plasma treatment on low density polyethylene (LDPE) has been carried out. The modified LDPE surfaces were characterized by measuring the static water contact angle. The adhesion and proliferation of cells on LDPE films were characterized by cell counting and reverse transcription-polymerase chain reaction (RT-PCR). The water contact angle of the film surface decreased with plasma treatment time. Proto-oncogenes (c-myc, c-fos) and tumor suppressor gene (p153) showed maximum expression with contact angle of 60 ∼ 70$^{\circ}$ range of LDPE film. By cell counting, we confirmed that the rate of cell proliferation appeared the higher on the film surface of the contact angle of 60∼70$^{\circ}$ We concluded that the surface wettability is an important role for the growth and differentiation of BMSCs.

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

The Fundamental Studies of the New Glow Discharge/Inductively Coupled Plasma Interface: Part Ⅰ. Preliminary Studies (새로운 글로우 방전/유도결합 플라스마 장치(GD/ICP Interface)에 대한 기초 연구: Part Ⅰ. 기초 연구)

  • Lee, Gae Ho;Kil, Hyo Shik;Kim, Hyung Seung;Gary M. Hieftje
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.182-192
    • /
    • 1999
  • The new GD/ICP-AES quick change over system has been developed and characterized. Within less than 15 minutes, ICP-AES could be switched to GD-AES and vise a versa. As a result, both solid and liquid samples could be analyzed in a very short period of time by the ICP/GD-AES quick change over system developed in our laboratory. The influences of the experimental variables, such as flow rate of coolant gas, flow rate of auxiliary gas, flow rate of sample carrier gas, sampling depth, orifice size of sampling cone, and rf (radio frequency) power on emission intensity have been presented. The detection limits of Cd(I) 228.8 nm, Mn (II) 257.61 nm, and Fe(II) 259.95 nm were found to be 3.86, 1.49, and 5.79 ppb, respectively. And linealities of the calibration curves were measured to be unity.

  • PDF

CHARACTERISTICS OF THE CONTAMINATED LANGMUIR PROBE (오염된 LANGMUIR 탐침의 특성)

  • Pyo, Y. S.;Min, K. W.;Choi, Y. W.;Lee, D. H.;Kang, K. M.;Hwang, S. M.;Kim, B. C.;Kim, J.;Lee, S. J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.234-243
    • /
    • 1995
  • Korea's third rocket, which is currently under development for launch in 1997, is expected to reach as high as 160km and thus, it will provide a good opportunity for the direct measurement of the plasmas in the E-region ionosphere of the Korean peninsula. Langmuir probe techniques, which are the basic tools of the plasma experiment, may yield inaccurate results if they are applied in the conventional form as they are used in the laboratory experiments because of the contamination. In the present paper we study the contamination problem by performing the ground experiments in the vacuum chamber using the contaminated probe. The result show that the contamination effect is reduced when the plasma density is low or when the frequency of the sweep voltage is fast. We propose a modified Langmuir probe based upon our experiments which is suitable for the rocket experiments.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Stability and Adhesion of Diamond-like Carbon Film under Micro-tensile Test Condition (미소 인장시험을 통한 다이아몬드상 카본 박막의 안정성 및 접합력 평가)

  • Choi Heon Woong;Lee Kwang-Ryeol;Wang Rizhi;Oh Kyu Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.175-181
    • /
    • 2004
  • We investigated the stability of the DLC film coated on 304 stainless steel substrate by Radio frequency assisted chemical vapor deposition method. Fracture and spallation behaviour of the coating was observed during micro-tensile test of the fil $m_strate composite. As the tensile deformation progressed, the cracks of the film were observed in the perpendicular direction to the tensile axis. Further deformation resulted in the plastic deformation with $45^{\circ}$ slip bands on the substrate surface. Spallation of the film occurred with the plastic deformation, which was initiated at the cracks of the film and was aligned along the slip directions. We found that both the cracking and the spallation behaviors are strongly dependent on the pre-treatment condition, such as Ar plasma pre-treatment. The spallation of the film was considerably suppressed in an optimized condition of the substrate cleaning by Ar glow discharge. We observed the improved stability with increasing duration of Ar plasma pre-treatment.nt.

Properties of Silicon Nitride Deposited by RF-PECVD for C-Si solar cell (결정질 실리콘 태양전지를 위한 실리콘 질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Song, Hee-Eun;Kang, Min-Gu;Kang, Gi-Hwan;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Silicon nitride($SiN_x:H$) deposited by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) is commonly used for anti-reflection coating and passivation in crystalline silicon solar cell fabrication. In this paper, characteristics of the deposited silicon nitride was studied with change of working pressure, deposition temperature, gas ratio of $NH_3$ and $SiH_4$, and RF power during deposition. The deposition rate, refractive index and effective lifetime were analyzed. The (100) p-type silicon wafers with one-side polished, $660-690{\mu}m$, and resistivity $1-10{\Omega}{\cdot}cm$ were used. As a result, when the working pressure increased, the deposition rate of SiNx was increased while the effective life time for the $SiN_x$-deposited wafer was decreased. The result regarding deposition temperature, gas ratio and RF power changes would be explained in detail below. In this paper, the optimized condition in silicon nitride deposition for silicon solar cell was obtained as 1.0 Torr for the working pressure, $400^{\circ}C$ for deposition temperature, 500 W for RF power and 0.88 for $NH_3/SiH_4$ gas ratio. The silicon nitride layer deposited in this condition showed the effective life time of > $1400{\mu}s$ and the surface recombination rate of 25 cm/s. The crystalline silicon solar cell fabricated with this SiNx coating showed 18.1% conversion efficiency.