• Title/Summary/Keyword: Radio frequency wave

Search Result 325, Processing Time 0.025 seconds

A Study of Radio Wave Propagation Criterion for the Cognitive Radio System using Interference Analysis in Broadcasting Band (방송대역에서 간섭분석을 이용한 무선인지 시스템의 전파 전달기준에 관한 연구)

  • Choi, Joo-Pyoung;Duy, Vo Quoc;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.1014-1022
    • /
    • 2009
  • In this paper, interference analysis is carried out to obtain the operating criterion and coexistence condition between digital television devices and cognitive radio-based mobile wimax devices in the UHF (Ultra High Frequency) broadcasting frequency bands. To this end, an efficient interfering calculation tool known as SEAMCAT (Spectrum Engineering Advanced Monte-Carlo Analysis Tool) is employed to acquire the coexistence criterions between heterogeneous radio links operating in the same portion of spectrum. As a result, these criterions will be used to achieve interference temperature limit level applied to interference temperature model for analyzing the capacity of cognitive radio receivers accurately.

A Study on Design and Fabrication of mmwave EM Absorber (밀리미터파 대역 전파흡수체의 설계 및 제작에 관한 연구)

  • Kim, Dae-Hun;Choi, Chang-Mook;Choi, Dong-Soo;Han, Hang-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.54-55
    • /
    • 2009
  • The bandwidth of detecting radars used for military purpose is increasingly broadened, and recently, the frequency band of the detecting radars is expanding to millimeterwave bands c! the millimeterwave bands of 35 GHz and 94 GHz. Since, especially, it is essential and important to fabricate and develop EM wave absorber with the absorption ability more than 10 dB in 94 GHz band, the EM wave absorber was manufactured based on the design method by FDTD simulation As a result, the developed EM wave absorber with the composition ratio of Binder(CPE with additional materials) : Carbon = 70 : 30 wt.% has the thickness of 0.7 mm and the absorption ability more than 14 dB in the frequency range of 94 GHz.

  • PDF

Reduction of Radio-Frequency Interference in Metal-Framed Smartphone Using EBG Structures (EBG 구조를 이용한 메탈 프레임 스마트폰 내의 전자파 간섭 저감)

  • Park, Hyun Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.945-948
    • /
    • 2016
  • Recent premium smartphones commonly employ a metal frame and this trend is currently spreading over mid-range smartphones. However, the metal frame becomes a good coupling path of electromagnetic noises emitted from digital components in smartphones and then increases radio-frequency interference(RFI) to RF antennas located at top and bottom sides of smartphones. This paper proposed a metal frame with EBG(Electromagnetic Band Gap) structure to reduce the noise coupling to antenna by suppressing surface wave on the metal frame. By simulation, it is confirmed that the proposed metal frame with $7{\times}6$ mushroom-type EBG array pattern with multi-via can reduce the noise coupling to RF antenna by about 20 dB.

Correlation Analysis of Transmission and Reflection Angle of Propagation Characteristics from 13-28 GHz

  • Kim, Yong Won;Jeong, Won Ho;Ju, Sang Lim;Kim, Kyung Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • In order to derive reliable propagation models for future millimeter-wave frequency indoor pico-cellular communications systems, accurate reflectivity data of building materials is necessary. The broad variety of building materials and construction codes makes accurate attenuation prediction very difficult without the support of specific construction data or measurements. This paper derives a transmission and reflection coefficient based on 13 GHz to 28 GHz measurement data. Transmission and reflection is measured by applying change in the reception angle of each building material, such as plasterboard. The transmission and reflection coefficient derived shows a correlation between frequency dependence and angle. As a result, as the reception angle is reduced, the reflected angle from the transmitter that could be received increases, showing that there is a correlation. In addition, the fundamental investigations carried out lay the foundation for radio channel-related research, which is essential for the development of future millimeter-wave communications systems.

Optical Radio Wave Systems in Wireless Fronthaul Networks (무선 프론트홀 네트워크에서의 광라디오파 시스템)

  • Cho, S.W.;Kim, Ajung;Choi, J.S.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.3-9
    • /
    • 2016
  • In this paper, we propose a Radio over Fiber system for small cell applications and for mobile fronthaul networks supporting cloud-radio access networks(RAN). We built a system with a downlink employing orthogonal frequency division multiplexing (OFDM) techniques and an uplink using single carrier-frequency multiple access(SC-FDMA). System parameters are evaluated for various subcarrier modulations and the results of link performance measurements are analyzed.

HOW TO DEAL WITH RADIO ASTRONOMY INTERFERENCE

  • UMAR, ROSLAN;HAZMIN, SABRI NOR;ABIDIN, ZAMRI ZAINAL;IBRAHIM, ZAINOL ABIDIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.691-693
    • /
    • 2015
  • Radio sources are very weak, as they can travel through large distances. Radio sources also have photons with low energies compared to others electromagnetic waves (EM). Microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and the most energetic electromagnetic wave is gamma-rays. Radio astronomy studies are restricted due to radio frequency interference (RFI) produced by people. If this disturbance is not minimized, it poses critical problems for astrophysical studies. The purpose of this paper is to profile RFI maps in Peninsular Malaysia with a minimum mapping technique for RFI interference. Decision-making processes using GIS (Geographical Information System) for the selection requires gathering information for a variety of parameters. These factors affecting the selection process are also taken into account. In this study, various factors or parameters are involved, such as the availability of telecommunications transmission (including radio and television), rainfall, water lines and human activity. This mapping step must be followed by RFI site testing in order to identify areas of low RFI. This study will benefit radio astronomy research, especially regarding the RFI profile.

Development of Millimeter-Wave band PLL System using YIG Oscillator (YIG 발진기를 이용한 밀리미터파대역의 PLL 시스템 개발)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.;Han, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.116-119
    • /
    • 2005
  • In this paper, we propose the PLL system of the local oscillator system for the millimeter wave band's radio astronomy receiving system. The development of the proposed local oscillator system based on the YIG oscillator VCO with 26.5 ${\sim}$ 40GHz specification. This system consists of the oscillator part including the YIG VCO, the harmonic mixer, and the isolator, the RF processing part including the triplexer, limiter, and RF discrimination processor. and the PLL system including YIG modulator and controller. Based on this configuration. we verify the frequency and power stability of the developed local oscillator system according to some temperature variation. From this test results we confirm the stable output frequency and power characteristic performance of the developed La system at constant temperature.

  • PDF

WiFi(RLAN) and a C-Band Weather Radar Interference

  • Moon, Jongbin;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.216-224
    • /
    • 2017
  • In the terrain of the Korean peninsula, mountainous and flat lands are complexly distributed in small areas. Therefore, local severe weather develops and disappears in a short time due to the influence of the terrain. Particularly in the case of local severe weather with heavy wind that has the greatest influence on aviation meteorology, the scale is very small, and it occurs and disappears in a short time, so it is impossible to predict with fragmentary data alone. So, we use weather radar to detect and predict local severe weather. However, due to the development of wireless communication services and the rapid increase of wireless devices, radio wave jamming and interference problems occur. In this research, we confirmed through the cases that when the radio interference echo which is one of the non-precipitation echoes that occur during the operation of the weather radar is displayed in the image, its form and shape are shown in a long bar shape, and have a strong dBZ. We also found the cause of the interference through the radio tracking process, and solved through the frequency channel negotiation and AP output minimizing. The more wireless devices increase as information communication technology develops in the future, the more emphasized the problem of radio wave interference will be, and we must make the radio interference eliminated through the development of the radio interference cancellation algorithm.

An Analysis on Harmonic Effects of Wideband Stepped Frequency Radars (광대역 스텝 주파수 레이다의 고조파에 대한 영향 분석)

  • Jun, Seung-Hyun;Kim, Dong-Kyoo;Lee, Chang-Seok;Lee, Dong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 2015
  • Harmonic effects in a wideband stepped frequency radar(650 MHz~4.5 GHz) have been analyzed. As a result of numerical analysis and simulation, when the second harmonic exists in each frequency, a time-domain result represents an additional object which does not exist but looks to be located at a distance of twice the original object distance. The second harmonics can be removed effectively by low pass filters because there are no other signals between DC and a fundamental signal. In this paper, the harmonic problem can be solved by removing the second harmonics of 650 MHz to 4.5 GHz wideband fundamental signal with two switches and four low pass filters.

Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

  • Lee, Chang-Hoon;Je, Do-Heung;Kim, Kwang-Dong;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • In this paper, we developed a local oscillator (LO) system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO) of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL) module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI) receiver and single dish radio astronomy receiver at the 3 mm frequency band.