• Title/Summary/Keyword: Radio bandwidth model

Search Result 53, Processing Time 0.049 seconds

Video Coding Method Using Visual Perception Model based on Motion Analysis (움직임 분석 기반의 시각인지 모델을 이용한 비디오 코딩 방법)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-236
    • /
    • 2012
  • We develop a video processing method that allows the more advanced human perception oriented video coding. The proposed method necessarily reflects all influences by the rate-distortion based optimization and the human visual perception that is affected by the visual saliency, the limited space-time resolution and the regional moving history. For reflecting the human perceptual effects, we devise an online moving pattern classifier using the Hedge algorithm. Then, we embed the existing visual saliency into the proposed moving patterns so as to establish a human visual perception model. In order to realize the proposed human visual perception model, we extend the conventional foveation filtering method. Compared to the conventional foveation filter only smoothing less stimulus video signals, the developed foveation filter can locally smooth and enhance signals according to the human visual perception without causing any artifacts. Due to signal enhancement, the developed foveation filter more efficiently transfers the bandwidth saved at smoothed signals to the enhanced signals. Performance evaluation verifies that the proposed video processing method satisfies the overall video quality, while improving the perceptual quality by 12%~44%.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF

Vulnerabilities and Attack Methods in Visible Light Communications Channel (가시광 통신 채널의 취약성 및 공격 방법)

  • Park, So-Hyun;Joo, Soyoung;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.469-471
    • /
    • 2021
  • As wireless communication technology advances to ensure high accuracy and safety at high speeds, research and development of Visible Light Communication (VLC) technology has been accelerated as an alternative to traditional radio frequency (RF) technology. As the radio spectrum of RF communication becomes more congested and demand for bandwidth continues to increase, VLCs that can use unlicensed frequency band are proposed as a solution. However, VLC channels have broadcasting characteristics that make them easily exposed to eavesdropping and jamming attacks, and are vulnerable to MITM (Man-In-The-Middle) due to their line of sight (LOS) propagation characteristics. These attacks on VLC channels compromise the confidentiality, integrity, and availability of communications links and data, resulting in higher data retransmission rates, reducing throughput and increasing power consumption, resulting in lower data transmission efficiency. In this work, we model vulnerable VLC channels to analyze the impact of attacks and communications vulnerabilities by malicious jammers.

  • PDF

An Efficient Network Resource Reservation Mechanism with Mobility in Nested Heterogeneous Mobile Networks (중첩 이종 무선 망 환경에서 단말의 이동 속도를 고려한 효과적인 망 자원 예약)

  • Park, In-Soo;Tak, Dong-Kuk;Kim, Won-Tae;Park, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.83-98
    • /
    • 2007
  • The handover between different radio access networks, especially where their coverage overlaps, suffers various complications since the different access networks provide different service characteristics. One way to reduce service interruptions and QoS (i.e., bandwidth, throughput, delay) degradations during the inter-technology handover is to reserve the required resource in advance. The resource reservation algorithm should minimize the handover latency and maximize the resource utilization based on the accurate estimation on mobile's location, velocity, movement pattern and service requirements. In this paper, we propose a resource reservation algorithm based on the mobile terminal velocity and the cell selection probability, which maximizes resource utilization ana reduces network overhead. We compare the proposed algorithm with PMS(Predictive Mobility Support) and VCDS(Velocity and Call Duration Support scheme) based on 3-layer network model under various scenarios.

Design of a 3:1 Wideband Circular Polarizer with Multilayered Meanderline Using Hybrid Method (하이브리드 방법을 이용한 다층 미앤더선로 구조의 3:1 광대역 원편파 편파기 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.730-739
    • /
    • 2015
  • In this paper, a wideband circular polarizer operating in the frequency range of 6~18 GHz is designed and fabricated using a multilayer structure with meanderlines. A T matrix expression for the unit structure, which consists of meanderline, dielectric substrate and spacer, was derived using the boundary value solution. A proposed meanderline structure was modeled as an array of unit meanderline cell in order to apply the waveguide model with PEC and PMC boundary conditions. The calculation procedures to obtain an equivalent susceptance of the unit meanderline cell using HFSS was also suggested. Using a hybrid method, which combines the T matrix with the HFSS results, and cut-and-try method, a wideband circular polarizer with low insertion loss and good AR performance was designed. The fabricated polarizer has the return loss less than -10 dB within 92 % bandwidth, the average insertion loss less than -0.24 dB, and the average AR below 2.6 dB for full 3:1 bandwidth.

A Study on the Performance of Multicast Transmission Protocol using FEC Method and Local Recovery Method based on Receiver in Mobile Host (이동 호스트에서 FEC기법과 수신자 기반 지역복극 방식의 멀티캐스트 전송 프로토콜 연구)

  • 김회옥;위승정;이웅기
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.68-76
    • /
    • 2002
  • Multicast in mobile host has the problem of hast mobility, multicast decision, triangle routing, tunnel convergence, implosion of retransmission, and bandwidth waste. In particular, the bandwidth waste in radio is a definite factor that decreases transmission rate. To solve the problems, this paper proposes a new multicast transmission protocol called FIM(Forward Error Correction Integrated Multicast), which supports reliable packet recovery mechanism by integrating If Mobility Support for the host mobility, IGMP(Interned Group Management Protocol) for the group management, and DVMRP(Distance Vector Multicast Routing Protocol) for the multicast routing, and it also uses FEC and the local recovery method based on receiver. The performance measurement is performed by dividing the losses into the homogeneous independent loss, the heterogeneous independent loss, and the shared source link loss model.. The result shows that the performances improves in proportion to the size of local areal group when the size of transmission group exceeds designated size. This indicates FIM is effective in the environment where there are much of data and many receivers in the mobile host.

  • PDF

A Spectrum Sharing Model for Compatibility between IMT-Advanced and Digital Broadcasting

  • Hassan, Walid A.;Rahman, Tharek Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2073-2085
    • /
    • 2012
  • Recently, the International Telecommunication Union allocated the 470-862 MHz band to the digital broadcasting (DB) service. Moreover, the 790-862 MHz sub-band will be allocated to the next-generation mobile system, known as the International Mobile Telecommunication - Advanced (IMT-A), and to the DB on a co-primary basis in the year 2015. Currently, two candidate technologies are available to represent the IMT-A system; the Mobile WiMAX and Long Term Evolution - Advanced (LTE-A). One of the main criteria of the IMT-A candidate is to not cause additional interference to the primary service (i.e., DB). In this paper, we address the spectrum sharing issue between the IMT-A candidates and the DB service. More precisely, we investigate the interference effect between the DB service and the mobile network, which could be either LTE-A or WiMAX. Our study proposes a spectrum sharing model to take into account the impact of interference and evaluates the spectrum sharing requirements such as frequency separation and separation distance. This model considers three spectrum sharing scenarios: co-channel, zero guard band, and adjacent channel. A statistical analysis is performed, by considering the interferer spectrum emission mask and victim receiver blocking techniques. The interference-to-noise ratio is used as an essential spectrum sharing criterion between the systems. The model considers the random distribution of the users, antenna heights, and the bandwidth effect as well as the deployment environment in order to achieve spectrum sharing. The results show that LTE-A is preferable to WiMAX in terms of having less interference impact on DB; this can eventually allow the operation of both services without performance degradation and thus will lead to efficient utilization of the radio spectrum.

Interference Influence Analysis on the Interoperability in the Combined Military Communication Systems (통합 군 통신 시스템에서 상호운용으로 인한 간섭 영향 분석)

  • Kim, Tae-Woo;Kim, Jung;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.365-371
    • /
    • 2014
  • It is essential for the combined military weapon system to be equipped with interoperability for the efficient combat operation in the modern warfare environment. Since most of modern military systems utilize the electromagnetic wave for the radio communication in the network-centric warfare system, they can be vulnerable to the mutual interference among the adjacent combined military systems. In this paper, the typical radio communication systems are modeled with the modulation types of both spread and non-spread spectrum system. The various interference signals were generated for the simulation of the mutual interference influence from the adjacent radar and communication systems. The simulation results show that the detection performance of the victim communication receiver is seriously affected by the various interferences such as the types of modulation and the ratio of the overlapping bandwidth of the adjacent interferers. This result will be useful for defining the criteria of the interference protection in the combined military system for the interoperability in the future.

Interference Impact Analysis of Ground Based Radar from Spaceborne High Resolution Synthetic Aperture Radar (고해상도 위성 탑재 영상 레이다(SAR)의 지상 레이다에 미치는 간섭 영향 분석)

  • Song, Woo-Jin;Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.663-668
    • /
    • 2008
  • Recently, World Radio Conference(WRC)-2007 approved the ultrawide bandwidth of 500 MHz for the use of spaceborne synthetic aperture radar in X-band for the EESS(Earth Exploration Satellite Service) in order to improve the SAR imaging resolution. It is concerned about the interference impact from the spaceborne SAR that may cause to most of ground radars due to the extended ultra wideband. In this paper, in order to predict the interference impact of the ground-based radar from the spaceborne radar, radar interference model is presented using radar characteristic parameters by taking into account the operating environments of the spaceborne and ground based radar in the time, space, and spectrum domains. Using the spaceborne SAR model of TerraSAR-X and ground radar model of meteorological radar recommended by ITU-R, the interference impact was assessed through the computer simulation to see the possible interference impact of the ground based radar operating in the Korean peninsula.

I/Q Imbalance Compensation Method for the Direct Conversion Receiver with Low Pass Filter Mismatch (저역 통과 필터 불일치를 포함한 직접 변환 수신기의 I/Q 불균형 보상 기법)

  • Yun, Seonhui;Ahn, Jaemin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.3-10
    • /
    • 2014
  • Direct conversion receiver(DCR) gets noticed for integration and cost reduction of wireless communication systems instead of the heterodyne receiver which uses complex filter. But DCR has several factors in performance degradation. One of them is I/Q imbalance phenomenon, that is amplitude and phase mismatch between real and imaginary part of receiver. Accordingly, researches are being carried to improve the I/Q imbalance problem. However, the tendency of the broaden bandwidth of communication systems, low pass filter(LPF) mismatch problem affects severely in I/Q mismatch phenomenon at the DCR. To study this problem, we generated 10MHz broadband signal and shifted it ${\pm}8MHz$ from the center frequency. The signal is affected by LPF mismatch and it appears as frequency selective distortion. Thus, LPF mismatch model is added to I/Q imbalance model which conventionally dealt with amplitude and phase mismatches. In addition, we proposed the compensation method for each factors of mismatch. As the simulation results, the proposed I/Q mismatch compensator resolves the frequency selective distortion which occurred by the existing LPF mismatch.