• Title/Summary/Keyword: Radio Bursts

Search Result 29, Processing Time 0.024 seconds

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

Origin of the Multiple Type II Solar Radio Bursts Observed on December 31 2007

  • Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Kwon, Ryun-Young;Park, Geun-Seok;Moon, Yong-Jae;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.1-37.1
    • /
    • 2009
  • Solar type II radio burst is regarded as a signature of coronal shock. However its association with coronal mass ejections (CMEs)-driven shock and/or flare blast waves remains controversial. On December 31 2007, SOHO/LASCO and STEREO/COR observed a CME that occurred on the east limb of the Sun. Meanwhile, two type II bursts were observed sequently by KASI/E-Callisto and the Culgoora radio observatory during the CME apparence time. In this study, we estimate kinematics of the two coronal shocks from dynamic spectrum of the multiple type II bursts and compare with the kinematics of the CME derived from the space observations. An origin of the multiple type II bursts is inspected and discussed briefly.

  • PDF

Determination of coronal electron density distributions by DH type II radio bursts and CME observations

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Lee, Kyoung-Sun;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2015
  • In this study, we determine coronal electron density distributions by analyzing DH type II radio observations based on the assumption: a DH type II radio burst is generated by the shock formed at a CME leading edge. For this, we consider 11 Wind/WAVES DH type II radio bursts (from 2000 to 2003 and from 2010 to 2012) associated with SOHO/LASCO limb CMEs using the following criteria: (1) the fundamental and second harmonic emission lanes are well identified; (2) its associated CME is clearly identified in the LASCO-C2 or C3 field of view at the time of type II observation. For these events, we determine the lowest frequencies of their fundamental emission lanes and the heights of their leading edges. Coronal electron density distributions are obtained by minimizing the root mean square error between the observed heights of CME leading edges and the heights of DH type II radio bursts from assumed electron density distributions. We find that the estimated coronal electron density distribution ranges from 2.5 to 10.2-fold Saito's coronal electron density models.

  • PDF

Dependence of solar proton events on their associated activities: solar and interplanetary type II radio burst, flare, and CME

  • Park, Jinhye;Youn, Saepoom;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.80.2-81
    • /
    • 2016
  • We investigate the dependence of solar proton events (SPEs) on solar and interplanetary type II bursts associated with solar flares and/or CME-driven shocks. For this we consider NOAA solar proton events from 1997 to 2012 and their associated flare, CME, and type II radio burst data with the following subgroups: metric, decameter-hectometric (DH), and meter-to-kilometric (m-to-km) type II bursts. The primary findings of this study are as follows. First, about half (52%) of the m-to-km type II bursts are associated with SPEs and its occurrence rate is higher than those of DH type II bursts (45%) and metric type II bursts (19%). Second, the SPE occurrence rate strongly depends on flare strength and source longitude, especially for X-class flare associated ones; it is the highest in the central region for metric (46%), DH (54%), and m-to-km (75%) subgroups. Third, the SPE occurrence rate is also dependent on CME linear speed and angular width. The highest rates are found in the m-to-km subgroup associated with CME speed 1500 kms-1: partial halo CME (67%) and halo CME (55%). Fourth, in the relationships between SPE peak fluxes and solar eruption parameters (CME linear speed, flare flux, and longitude), SPE peak flux is mostly dependent on SPE peak flux for all three type II bursts (metric, DH, m-to-km). It is noted that the dependence of SPE peak flux on flare peak flux decreases from metric to m-to-km type II burst.

  • PDF

Burst Locating Capability of the Korean Solar Radio Burst Locator (KSRBL)

  • Hwangbo, Jung-Eun;Bong, Su-Chan;Park, Sung-Hong;Lee, Dae-Young;Cho, Kyung-Suk;Lee, Jaejin;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • The Korean Solar Radio Burst Locator (KSRBL) is a solar radio spectrograph observing the broad frequency range from 0.245 to 18 GHz with the capability of locating wideband gyrosynchrotron bursts. Due to the characteristics of a spiral feed, the beam center varies in a spiral pattern with frequency, making a modulation pattern over the wideband spectrum. After a calibration process, we obtained dynamic spectra consistent with the Nobeyama Radio Polarimeter (NoRP). We compared and analyzed the locations of bursts observed by KSRBL with results from the Nobeyama Radioheliograph (NoRH) and Atmospheric Imaging Assembly (AIA). As a result, we found that the KSRBL provides the ability to locate flaring sources on the Sun within around 2'.

CONSTRUCTION OF AN E-CALLISTO STATION IN KOREA

  • Bong, Su-Chan;Kim, Yeon-Han;Roh, Hee-Seon;Cho, Kyung-Suk;Park, Young-Deuk;Choi, Seong-Hwan;Baek, Ji-Hye;Monstein, Christian;Benz, Arnold O.;Moon, Yong-Jae;Kim, Sung-Soo S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The e-CALLISTO is a global network of frequency-agile solar radio spectrometers that was constructed in a collaboration between Swiss Federal Institute of Technology Zurich (ETH Zurich) and local host institutes. It is intended to monitor solar radio bursts 24 hours a day in frequency range between 45 MHz and 870 MHz. One of e-CALLISTO spectrometer was installed at Korea Astronomy and Space Science Institute (KASI) in 2007 October. The spectrometer gets signals from a horizontally polarized log-periodic antenna mounted on an automatic Sun-tracking system. Tracking status and data are monitored in Space Weather Monitoring Laboratory (SWML) of KASI in real time, and flare time data are transferred to ETH Zurich data archive daily. Using this spectrometer we obtained a couple of type II solar radio bursts on 2007 December 31, and found that these bursts are associated with a CME which occurred on the east limb.

Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

  • Admiranto, Agustinus G.;Priyatikanto, Rhorom
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave) and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave). In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

Construction of Korean Space Weather rediction Center: K-SRBL

  • Bong, Su-Chan;Kim, Yeon-Han;Cho, Kyung-Suk;Choi, Seong-Hwan;Park, Young-Deuk;Gary, Dale E.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.2-32.2
    • /
    • 2008
  • A major solar radio burst can disturb many kinds of radio instruments, including cellular phone, GPS, and radar. Korea Astronomy and Space Science Institute (KASI) is developing Korean Solar Radio Burst Locator (KSRBL) in collaboration with New Jersey Institute of Technology. KSRBL is a single dish radio spectrograph, which records the spectra of microwave (0.5 - 18 GHz) bursts with 1 MHz spectral resolution and 1 s time cadence, and locates their positions on the solar disk within 2 arcmin. Hardware manufacturing is almost completed including 4-channel digitizer/FPGA. The system is currently installed at Owens Valley Radio Observatory (OVRO), and test of the operation is in progress. It will be installed at KASI in 2009. We report current status and test results of KSRBL.

  • PDF

TRANSIT OF THE INTERPLANETARY SHOCKS ASSOCIATED WITH TYPE II RADIO BURSTS WITHIN 1AU (Type II 전파폭발이 관측된 행성간 충격파의 1AU 내에서의 전파 과정)

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Among the interplanetary shock (IP shock)s observed by ACE spacecraft at 1AU during 1997 to 2000, we have selected 31 IP shocks which had triggered the interplanetary type II radio bursts detected by the WIND spacecraft while those shocks were leaving the Sun. We compared the observed IP shock propagation speeds and the IP shock transit speeds estimated by time difference between the interplanetary type II radio burst detection and the IP shock observation. Then, we found that the mean acceleration of the IP shocks between the Sun and the Earth is about $-1.02m/sec^2$, which means the deceleration contrary to the positive acceleration predicted by Parker solar wind model. It is also verified that the acceleration of the IP shock does not show any linear correlation with the shock propagation speed and the Mach number of the IP shock.