• 제목/요약/키워드: Radicicol

검색결과 11건 처리시간 0.028초

Inhibition of p65 Nuclear Translocation by Radicicol, Heat Shock Protein Inhibitor

  • Kim, Sang-Gyu;Jeon, Young-Jin;Lee, Seog-Ki
    • Toxicological Research
    • /
    • 제21권4호
    • /
    • pp.285-290
    • /
    • 2005
  • We demonstrate that radicicol, a macrocyclic antifungal antibiotic originally isolated from Monosporium bonorden, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with radicicol inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RTPCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that radicicol inhibited $NF-\kappa/Rel$ nuclear translocation. DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that radicicol inhibits iNOS gene expression by blocking $NF-\kappa/Rel$ nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of radicicol on iNOS suggest that radicicol may represent a useful anti-inflammatory agent.

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol

  • Kang, Yunhee;Lee, Seung-Ho;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.432-436
    • /
    • 2014
  • The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus.

Radicicol이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향 (Effects of Radicicol on the Metabolism of ${\beta}-Amyloid$ Precursor Protein in Neuroblastoma Cells)

  • 임재윤;이일화;이경아;공두균;최부진;이충수;은재순
    • 약학회지
    • /
    • 제51권4호
    • /
    • pp.264-269
    • /
    • 2007
  • Alzheimer’s disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}-amyloid $ (A ${\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. In this study, effects of radicicol on the metabolism of APP were analyzed. Radicicol inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing APPswe. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependently manner. Immunoblotting study showed that it inhibited intracellular heat shock protein (HSP)90 and it increased the secretion of HSP90 from the APPswe cells. We suggest that radicicol inhibits APP metabolism and Ap generation by the means of HSP90 inhibitory mechanism and partially BACE inhibitory mechanism. This is the first report that radicicol inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과 (Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens)

  • 김도현;;이정관;이승호
    • 식물병연구
    • /
    • 제28권1호
    • /
    • pp.19-25
    • /
    • 2022
  • 인삼은 수천 년 동안 동아시아에서 재배된 중요한 약용 식물이다. 일반적으로 같은 포장에서 4-6년 동안 재배되기 때문에 다양한 병원균에 노출된다. 그 중 인삼뿌리썩음병이 가장 큰 피해를 주는 주요 원인이다. 본 연구에서는 건강한 인삼에서 내생균을 분리하고, 인삼뿌리썩음병원균에 대해 길항작용을 갖는 내생균을 선발하였다. 분리된 17개 균주 중, 3개 균주가 인삼뿌리썩음병원균에 길항작용을 나타냈으며 인삼뿌리썩음병균이 생산하는 곰팡이독소인 라디시콜에 내성을 보였다. 우수한 길항효과와 라디시콜 저항성을 갖는 Bacillus velezensis CH-15를 선발하여 추가 실험을 수행하였다. 인삼 뿌리에 CH-15를 접종하면 병원균의 균사 생장을 억제할 뿐만 아니라 질병의 진행도 억제하였다. CH-15는 또한 바실로마이신 D, 이투린 A, 바실리신, 서팩틴 생합성 유전자를 갖고 있었다. 또한 CH-15 배양여액은 병원균 생장과 분생포자 발아를 억제하였다. 본 연구는 내생균 CH-15가 인삼뿌리썩음병 병원체에 대해 길항작용을 하고 인삼뿌리썩음병의 진행을 억제함을 보여주었으며 이 균주가 인삼뿌리썩음병을 억제하는 미생물 제제가 될 수 있을 것으로 기대한다.

Diagnosis of Cylindrocarpon destructans Using Enzyme-Linked Immunosorbent Assay

  • Li, Taiying;Ji, Sungyeon;Jung, Boknam;Kim, Bo Yeon;Lee, Kwang Sik;Seo, Mun Won;Lee, Sung Woo;Lee, Jungkwan;Lee, Seung-Ho
    • 식물병연구
    • /
    • 제25권3호
    • /
    • pp.131-135
    • /
    • 2019
  • Cylindrocarpon destructans causes ginseng root rot and produces radicicol that has an antifungal effect. In this study, we developed a method to detect this fungus using enzyme-linked immunosorbent assay (ELISA). Secreted proteins of C. destructans were used as antigens to obtain C. destructans-specific IgG from mouse. Out of 318 monoclonal antibodies generated from mouse, two antibodies (Cd7-2-2 and Cd7-2-10) showed highest specificity and sensitivity. Indirect ELISA using both antigens successfully detected C. destructans in soils, but direct ELISA using IgG conjugated with horseradish peroxidase failed to detect antigens in soils. The indirect ELISA developed here can efficiently detect the fungus and help manage ginseng root rot disease in fields.

Effects of Protein Kinase Inhibitors on In Vitro Protein Phosphorylation and on Secondary Metabolism and Morphogenesis in Streptomyces coelicolor A3(2)

  • Hong, Soon-Kwang;Sueharu, Horinouchi
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권4호
    • /
    • pp.325-332
    • /
    • 1998
  • In vitro phosphorylation experiments with a cell extract of Streptomyces coelicolor A3(2) M130 in the presence of ${\gamma}-[^32P]$]ATP revealed the presence of multiple phosphorylated proteins, including the AfsR/AfsK kinases which control the biosynthesis of A-factor, actinorhodin, and undecylprodigiosin. Phosphorylation of AfsR by a cell extract as an AfsK source was significantly inhibited by Ser/Thr protein kinase inhibitors, staurosporine and K-252a, at concentrations giving 50% inhibition ($IC_50$) of $1{\mu}M\;and\;0.1{\mu}M$, respectively. Further in vitro experiments with the cell extracts showed that phosphorylation of multiple proteins was inhibited by various protein kinase inhibitors with different inhibitory profiles. Manganese and calcium ions in the reaction mixture also modulate phosphorylation of multiple proteins. Manganese at 10 mM greatly enhanced the phosphorylation and partially circumvented the inhibition caused by staurosporine and K-252a. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, which are known as tyrosine kinase inhibitors, did not show any significant inhibition of AfsR phosphorylation. Consistent with the in vitro effect of the kinase inhibitors, they inhibited aerial mycelium formation and pigmented antibiotic production on solid media. On the contrary, when assayed in liquid culture, the amount of actinorhodin produced was increased by staurosporine and K-252a and greatly decreased by manganese. All of these data clearly show that the genus Streptomyces possesses several protein kinases of eukaryotic types which are involved in the regulatory network for morphogenesis and secondary metabolism.

  • PDF