• Title/Summary/Keyword: Radical mechanism

Search Result 503, Processing Time 0.509 seconds

Chemistry Study on Protective Effect against·OH-induced DNA Damage and Antioxidant Mechanism of Cortex Magnoliae Officinalis

  • Li, Xican;Fang, Qian;Lin, Jing;Yuan, Zhengpeng;Han, Lu;Gao, Yaoxiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.117-122
    • /
    • 2014
  • As a Chinese herbal medicine used in East Asia for thousands years, Cortex Magnoliae Officinalis (CMO) was observed to possess a protective effect against OH-induced DNA damage in the study. To explore the mechanism, the antioxidant effects and chemical contents of five CMO extracts were determined by various methods. On the basis of mechanistic analysis, and correlation analysis between antioxidant effects & chemical contents, it can be concluded that CMO exhibits a protective effect against OH-induced DNA damage, and the effect can be attributed to the existence of phenolic compounds, especially magnolol and honokiol. They exert the protective effect via antioxidant mechanism which may be mediated via hydrogen atom transfer (HAT) and/or sequential electron proton transfer (SEPT). In the process, the phenolic-OH moiety in phenylpropanoids is oxidized to the stable quinine-like form and the stability of quinine-like can be ultimately responsible for the antioxidant.

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Vortex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman#s detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. The results show that fuel-side and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

Effects of Sesami Semen on Anti-Allergic Inflammation Mechanism related with Atopic Dermatitis (흑지마(黑芝麻)가 알러지성 염증 반응에 미치는 영향)

  • Ko, Hong-Yun;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.105-119
    • /
    • 2006
  • This study aimed to investigate the effects of Sesami Semen on the itching and anti-allergic inflammation mechanism related with cytokine, chemokine, histamine, $\beta$-hexosaminidase, NF-$\kappa$B, and free radical, and it was concluded as follows : 1. Sesami Semen did not show any cytotoxicity at the range of con-centration (1-250 ${\mu}g/m\ell$) on the human fibroblast cell (hFCs). 2. Sesami Semen reduced the gene expressions of IL-8, TNF-$\alpha$, IL-6 mRNA comparing with control. 3. Sesami Semen reduced the levels of IL-6, IL-8, MCP-1 within THP-1 cell depending on the concentration, and especially significantly reduced the the levels of IL-6, MCP-1 at all the concentration. 4. Sesami Semen significantly decreased the histamine secretion on HMC-1 at all the concentration. 5. Sesami Semen decreased the $\beta$-Hexosaminidase secretion 6.2% at 10 ${\mu}g$/ml conc., 58.3% at 100 ${\mu}g$/ml conc. and 63.2% at 200 ${\mu}g$/ml conc., respectively. And IC50 (${\mu}g$/ml) was 158.25 ${\mu}g$/ml. 6. Sesami Semen significantly suppressed the activity of NF-$\kappa$B promoter depending on the concentration. 7. Sesami Semen decreased the production of reactive oxygen species (ROS) and DPPH generation depending on the concentration. As judged with above results, the effects of Sesami Semen on the anti-allergic inflamation would be recognized, and it could be applied on the medicinal sources for prevention or treatment of several allergy disease. And more studies are needed furthermore with the seperation of effective materials.

  • PDF

Homology Modeling and Molecular Docking Study of Translationally Controlled Tumor Protein and Artemisinin

  • Chae, Jin-Sun;Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2006
  • Translationally controlled tumor protein (TCTP), also known as histamine releasing factor (HRF), is found abundantly in different eukaryotic cell types. The sequence homology of TCTP between different species is very high, belonging to the MSS4/DSS4 superfamily of proteins. TCTP is involved in both cell growth and human late allergy reaction, as well as having a calcium binding property; however, its primary biological functions remain to be clearly elucidated. In regard to many possible functions, the TCTP of Plasmodium falciparum (Pf) is known to bind with an antimalarial agent, artemisinin, which is activated by heme. It is assumed that the endoperoxide-bridge of artemisinin is opened up by heme to form a free radical, which then eventually alkylates, probably to the Cys14 of PfTCTP. Study of the docking of artemisinin with heme, and subsequently with PfTCTP, was carried out to verify the above hypothesis on the basis of structural interactions. The three dimensional (3D) structure of PfTCTP was built by homology modeling, using the NMR structure of the TCTP of Schizosaccharomyces pombe as a template. The quality of the model was examined based on its secondary structure and biological function, as well as with the use of structure evaluating programs. The interactions between artemisinin, heme and PfTCTP were then studied using the docking program, FlexiDock. The center of the peroxide bond of artemisinin and the Fe of heme were docked within a short distance of $2.6{\AA}$, implying the strong possibility of an interaction between the two molecules, as proposed. When the activated form of artemisinin was docked on the PfTCTP, the C4-radical of the drug faced towards the sulfur of Cys14 within a distance of $2.48{\AA}$, again suggesting the possibility of alkylation having occurred. These results confirm the proposed mechanism of the antimalarial effect of artemisinin, which will provide a reliable method for establishing the mechanism of its biological activity using a molecular modeling study.

The Effects of Soybean Protopectinase on Melanin Biosynthesis (효소(Protopectinase) 처리한 대두가 세포내 멜라닌 생성에 미치는 영향)

  • Yoo, Jin-Kyoun;Lee, Jin-Hee;Cho, Hyung-Yong;Kim, Jung-Gook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.355-362
    • /
    • 2013
  • This study was performed to assess the antioxidant activities and whitening effects of protopectinase enzymes and mechanical maceration from soybeans on melanin synthesis. The whitening effects of enzyme treatment and mechanical maceration were examined by an in vitro mushroom tyrosinase assay and by assessing markers in B16BL6 melanoma cells. We assessed inhibitory effects on the expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effects on free radical generation were determined by measuring DPPH and hydroxyl radical scavenging activities. In DPPH radical scavenging activity, enzyme treatment and mechanical maceration had a potent anti-oxidant activity in a dose-dependent manner and significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. There was also an inhibition in the expression of tyrosinase, TRP-1, and TRP-2 in B16BL6 melanoma cells. Our results show that soybean protopectinase treatment inhibits melanogenesis, with the underlying mechanism possibly due to the inhibition of tyrosinase activity and tyrosinase, TRP-1, and TRP-2 expression. We suggest that soybean protopectinase should be contained as natural active ingredients for antioxidant and whitening cosmetics.

Generation of Superoxide Radical from Rat Brain Mitochondria and Mechanism of Its Toxic Action to Mitochondrial and Extra-mitochondrial Components (흰쥐 뇌 미토콘드리아에 의한 superoxide radical의 생성과 이 radical이 미토콘드리아 및 미토콘드리아 외 물질에 대한 독작용과 그 기전에 관한 연구)

  • Roh, Jae-Kyu;Pyo, Jang-Geun;Chung, Myung-Hee;Lim, Jung-Kyoo;Myung, Ho-Jin
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.12-26
    • /
    • 1985
  • The generation of $O^{-}_{2}{\cdot}$ and its toxic effects were studied with rat brain mitochondria. The production of $O^{-}_{2}{\cdot}$ from mitochondria in the presence of succinate and antimycin was demonstrated by SOD-inhibitable reduction of NBT. Although succinate can support the $O^{-}_{2}{\cdot}$ formation, the highest rate needs antimycin indicating that blockade of electron flow in the respiratory chain augments the univalent reduction of molecular oxygen. Under this condition, $H_2O_2$ was also observed to be produced. But its formation appears to be derived from the dismutation of the primary product, $O^{-}_{2}{\cdot}$ since the rate of $H_2O_2$ production was markedly decreased by NBT and ferricytochrome c. The $O^{-}_{2}{\cdot}$ and $H_2O_2$ produced were able to cause toxic actions to mitochondrial and extra-mitochondrial components as shown by lipid peroxidation of mitochondrial membrane, and inactivation and lysis of isocitrate dehydrogenase and erythrocytes added to the medium, respectively. In all the toxic actions observed, $Fe^{++}$ was required. It appears that in the toxic actions $OH{\cdot}$ generated from the iron-catalyzed Haber-Weiss reaction acts as a mediator. This was supported by the finding that mitochondria in the presence of succinate and antimycin produced ethylene from methional, and $Fe^{++}$ added increased the ethylene production. The observed toxic actions of mitochondrial $O^{-}_{2}{\cdot}$ may provide evidence supporting a potential role of mitochondria as a source of oxygen radicals to cause tissue damage.

  • PDF

The Rate of Superoxide Radical (${O_2}^-$.) Production in Normal Fenton's Reagent at Different pHs (펜톤반응에서 pH의 변화에 따른 superoxide radical (${O_2}^-$.)의 생성)

  • 김용수;공성호;김재호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.73-81
    • /
    • 2002
  • In normal Fenton's reagent, the reductive mechanism of carbon tetrachloride (CT) with superoxide radical (${O_2}^-$.) was observed and the rate of ${O_2}^-$. production was investigated as a function of $H_2O$$_2$ concentration and pH. As pH was increased, the rate of 1-hexanol degradation was rapidly decreased from 90% (at pH 3) to 5% (at pH 11). On the other hand, more degradation of carbon tetrachloride was observed at higher pH regimes indicating Fenton's reaction is an oxidant-reductant co-existing system at neutral pHs. The rate of $O_2^{-}$ . production was observed at different $H_2$$O_2$ concentrations and at different pHs. The rate increased from (45.3$\pm$7.8) x $10^{-6}$ M/s to (151.0$\pm$26.2) x $10^{-6}$ M/s ($294mM H_2$$O_2$) at pH 11: the rate 3150 increased from (22.1$\pm$3.8) x $10^{-6}$ M/s at pH 7 to (151.0$\pm$26.2) x $^10{-6}$ M/s at pH 11 with 294mM $H_2$$O_2$, These results showed that Fenton's reagent could be applied at wide pH regimes. Especially, carbon tetrachloride, which can not be easily adsorbed to soils and then can be dissolved into groundwater causing a cancer, could be efficiently treated by Fenton's reagent.reagent.

Measurement of the Quantity of Hydrogen Peroxide Produced in the Ultrasound-irradiated Aqueous Solution of Organic Compounds (초음파를 조사(照射)한 유기화합물 수용액 속에서의 과산화수소 생성량의 측정)

  • Mo, Se-Young;Chang, Hong-Ki;Lee, Kyung-Jae;Jang, Gun-Eik;Sohn, Jong-Ryeul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.61-71
    • /
    • 2000
  • When irradiate the power ultrasound into the aqueous solutions, water vapor is decomposed by the heat of very high temperature in the cavitation bubble to produce OH (hydroxyl radical) and H (hydrogen radical), and these radicals play a role in decomposing the substances in aqueous solution by oxidation and/or reduction, and in producing the hydrogen peroxide. Accordingly it is possible to predict that the quantity of hydrogen peroxide produced may correlate with the sonolysis mechanism of the substance in aqueous solution. Thus to confirm this prediction, the quantities of hydrogen peroxide produced from each of the air saturated distilled water and three aqueous solutions of TCE, benzene, and 2,4-DCP that are prepared by dissolving them into distilled water are measured. As a result, it showed that the quantity of hydrogen peroxide produced from the distilled water and three aqueous solutions are increased in order of distilled water>TCE solution>2,4-DCP solution>benzene solution, and decrease with decrease in concentration of organic substance, which coincide with the sonolysis mechanisms reported that TCE in aqueous solution is decomposed directly by the pyrolysis in and around the cavitation bubbles when its concentration is high and by the radical reaction when low, however, benzene and 2,4-DCP are decomposed not only by the pyrolysis but also by the radical reactions. Effects of such experimental parameters as the acoustic frequency and power and as the concentration showed that the higher the acoustic frequency and the lower the acoustic power, the less the quantity of hydrogen peroxide was produced. This result coincide with the theory of ultrasound for the relation between the cavitation that is the energy source of the power ultrasound in aqueous solution and these experimental parameters.

  • PDF

Mechanism of aging and prevention (노화의 기전과 예방)

  • Kim, Jay Sik
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.104-108
    • /
    • 2001
  • Aging is a senescence and defined as a normal physiologic and structural alterations in almost all organ systems with age. As Leonard Hayflick, one of the first gerontologists to propose a theory of biologic aging, indicated that a theory of aging or longevity satisfies the changes of above conditions to be universal, progressive, intrinsic and deleterious. Although a number of theories have been proposed, it is now clear that cell aging (cell senescence) is multifactorial. No single mechanism can account for the many varied manifestations of biological aging. Many theories have been proposed in attempt to understand and explain the process of aging. Aging is effected in individual by genetic factors, diet, social conditions, and the occurrence of age-related diseases as diabetes, hypertension, and arthritis. It involves an endogenous molecular program of cellular senescence as well as continuous exposure throughout life to adverse exogenous influences, leading to progressive infringement on the cell's survivability so called wear and tear. So we could say the basic mechanism of aging depends on the irreversible and universal processes at cellular and molecular level. The immediate cause of these changes is probably an interference in the function of cell's macromolecules-DNA, RNA, and cell proteins-and in the flow of information between these macromolecules. The crucial questions, unanswered at present, concerns what causes these changes in truth. Common theories of aging are able to classify as followings for the easy comprehension. 1. Biological, 1) molecular theories - a. error theory, b. programmed aging theory, c. somatic mutation theory, d. transcription theory, e. run-out-of program theory, 2) cellular theories - a. wear and tear theory, b. cross-link theory, c. clinker theory, d. free radical theory, e. waste product theory, 3) system level theory-a. immunologic/autoimmune theory, 4) others - a. telomere theory, b. rate of living theory, c. stress theory, etc. Prevention of aging is theoretically depending on the cause or theory of aging. However no single theory is available and no definite method of delaying the aging process is possible by this moment. The most popular action is anti-oxidant therapy using vitamin E and C, melatonin and DHEA, etc. Another proposal for the reverse of life-span is TCP-17 and IL-16 administration from the mouse bone marrow B cell line study for the immunoglobulin VDJ rearrangement with RAG-1 and RAG-2. Recently conclusional suggestion for the extending of maximum life-span thought to be the calory restriction.

  • PDF