• 제목/요약/키워드: Radical Activation

검색결과 245건 처리시간 0.03초

니파야자(Nypa fruticans Wurmb) 꽃대의 영양성분 및 항산화 활성 (Analysis of Nutritional Components and Antioxidant Activity of Nipa Palm(Nypa fruticans Wurmb) Flower Stalk)

  • 이영희;김월곤;정현아;오왕규
    • 한국식품영양학회지
    • /
    • 제30권5호
    • /
    • pp.1080-1086
    • /
    • 2017
  • The quality and the nutritional ingredients and the functional activation of Nypa fruticans flower stalk was evaluated in this research. It consisted of 7.5% of water, 13.56% of crude protein, 0.84% of crude fat, 9.25% of crude ash, and 68.85% of carbohydrate. 12 kinds of minerals were identified, where the top 3 of them being K, Cl, and Na in order. There were a total of 15 types of amino acid analyzed, with the main amino acids of arginine 30.25%, aspartic acid 26.90%, and glutamic acid 17.12%. Total polyphenol content was 20,190.73 mg/100 g, and the total flavonoid content was 71.73 mg/100 g. The $IC_{50}$ for DPPH radical scavenging ability was $0.017{\pm}0.00mg/mL$ for Nypa fruticans Wurmb flower stalk, $0.672{\pm}0.01mg/mL$ for blueberry, and $1.282{\pm}0.03mg/mL$ for ginseng. The $IC_{50}$ for ABTS radical scavenging ability was $0.070{\pm}0.00mg/mL$ for Nypa fruticans Wurmb flower stalk, $2.918{\pm}0.13mg/mL$ for blueberry, and $4.131{\pm}0.24mg/mL$ for ginseng. For this reason, it is considered that containing plenty of polyphenol and antioxidant, Nypa fruticans Wurmb is related to antiinflammation. This research will contribute to production of functional foods and high value materials using Nypa fruticans Wurmb.

유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구 (A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate)

  • 강샛별
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.763-767
    • /
    • 2019
  • 본 연구에서는 흐름형 반응기를 활용하여 단일 화합물로 구성된 연료인 exo-tetrahydrodicyclopentadiene (exo-THDCP)의 유량을 변화시킴에 따라 나타나는 열분해 특성에 대해 분석하였다. 실험은 $500^{\circ}C$, 50 bar의 온도와 압력 조건에서 수행하였으며, 각 유량 조건에서 반응을 통해 생성된 물질은 GC/MS를 사용하여 분석하였다. 그 결과, exo-THDCP는 열에 의해 주로 고리형 화합물로 분해됨과 동시에 일부는 이성질화 되는 것을 확인하였다. 또한, 유량이 증가할수록 분해 및 이성질화 반응을 통해 생성되는 화합물의 종류와 비율이 감소하였으며, 이에 따라 연료의 전환율과 분해 반응 시에 발생하는 흡열량도 함께 감소하였다. 열분해 반응 시에 비교적 빠르게 생성되는 화합물은 주로 1-cyclopentylcyclopentene (1-CPCP)의 radical 형태를 중간체로 하여 형성되는 것으로 분석되었는데, 이는 exo-THDCP로부터 생성될 수 있는 중간체 중에서도 특히 1-CPCP가 생성되는 데에 필요한 활성화 에너지가 약 42 kcal/mol로 가장 낮기 때문인 것으로 해석된다.

Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway

  • Cui, Yanji;Amarsanaa, Khulan;Lee, Ji Hyung;Rhim, Jong-Kook;Kwon, Jung Mi;Kim, Seong-Ho;Park, Joo Min;Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.121-130
    • /
    • 2019
  • Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons ($100{\mu}M$, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner ($1-50{\mu}M$) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of $Ca^{2+}$ and ROS, mitochondrial membrane potential (${\Delta}{\Psi}_m$) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.

Anti-Inflammatory Effects of Abalone (Haliotis discus hannai) Viscera via Inhibition of ROS Production in LPS-Stimulated RAW 264.7 Cells

  • Shin, Tai-Sun;Choi, Kap Seong;Chun, Jiyeon;Kho, Kang-Hee;Son, Seon Ah;Shim, Sun-Yup
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2022
  • Haliotis discus hannai called abalone, is the valuable marine mollusks and the by-products of abalone processing are viscera. Brownish abalone male viscera (AMV), which have not been reported as having anti-inflammatory effects, was extracted with acetone and fractionated by different six acetone/hexane ratios (0, 10, 20, 30, 40, and 100%) using a silica column via in vitro ABTS and DPPH radical and nitric oxide (NO) production assay-guided fractionation. Among the fractions, the acetone/hexane ratio 40%, A40 exhibited the most potent radical scavenging activities and inhibition of lipopolysaccharide (LPS)-induced NO production without cytotoxicity. A40 inhibited LPS-induced intracellular reactive oxygen species (ROS) production in a dose-dependent manner. Western blot analysis revealed that A40 down-regulated the activation of NF-κB, MAPK (ERK 1/2, p-38, and JNK), and inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Moreover, this fraction inhibited the generation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. These results suggested that AMV containing A40 with anti-inflammatory and anti-oxidantive effects, is the effective therapeutic and functional material for treating inflammatory disorders.

Effect of Methanol Extract from Cassia mimosoides var. nomame on Ischemia/Reperfusion-induced Renal Injury in Rats

  • Baek, Hae Sook;Lim, Sun Ha;Ahn, Ki Sung;Lee, Jong Won
    • 대한본초학회지
    • /
    • 제28권6호
    • /
    • pp.135-143
    • /
    • 2013
  • Objectives : The purpose of this study was to determine whether the methanol extract of Cassia mimosoides var. nomame Makino, a naturally growing plant in Korea, could prevent the renal-ischemia/reperfusion injury in a rat model or not. Methods : The radical scavenging activities of the extracts, and ascorbic acid as a positive control, were measured in vitro. At one hour after an intraperitoneal injection of the extract (400 mg/kg), renal ischemia/reperfusion injury was generated by 40 min clamping of the left renal artery in rats. After renal ischemia/reperfusion and 24 hr restoration of blood circulation, the serum creatinine concentration was measured. And the extent of epithelial cell injury and apoptosis was assessed by various staining technologies. The Bax/Bcl-2 ratio and activated caspase-3 were assessed by immunohistochemistry. Results : The extract showed a slightly lower level of radical scavenging activity than that of ascorbic acid. Compared to those of the vehicle-treated group, the extract-treated group displayed a significantly smaller tubular epithelial cell injury of 54% reduction in the outer medulla region and a lower serum creatinine concentration of 50% reduction. It seems that the reduction in cellular injury is due to the attenuation of the Bax/Bcl-2 ratio, and the inhibition of caspase-3 activation by the extract of Cassia mimosoides. Conclusions : Cassia mimosoides var. nomame Makino could be a good candidate for a prophylactic agent against the ischemia/reperfusion/induced kidney injury.

인삼(人蔘)이 생쥐의 남성 생식세포 GC-1 spermatogonia의 항산화에 미치는 영향 (Antioxidant Effects of PanaX ginseng in Mouse GC-1 Spennatogonia Cells)

  • 심경준;강지웅;최봉재;박수연;장문석;박성규
    • 대한본초학회지
    • /
    • 제24권2호
    • /
    • pp.93-98
    • /
    • 2009
  • Objectives : Previously we reported that the roots of Panax ginseng C.A. Meyer (Araliaceae) increased sperm count and motility. also induced spermatogenesis via cAMP-responsive element modulator(CREM) activation in rat testes. In this study, for the first step of spermatogenesis in germ cell lines, the antioxidant activity of Panax ginseng were examined in mouse GC-1 spermatogonia cells. Methods : The extract was studied on diphenyl-picryl-hydrazyl (DPPH) radical scavenging activity, GC-1 cell viability by a modified MIT assay. H202-induced cytotoxicity by MIT assay and lipid peroxidation by malondialdehyde (MDA) formation. respectively. Results: The results showed that the extract scavenged DPPH radical with the IC50 being 0.631 mg/mi. The extract at concentrations of 5, and 10, 50, 100, 250 ${\mu}$g/mi increased GC-1 cell viability significantly(p < 0.05, and p < O.O1). Hydrogen peroxide-induced cytotoxicity (73.8%, p < O.O1) was blocked by the extract at concentrations of 50, and 100, 250, 500 ${\mu}$g/ml significantly (p < 0.05, and p < O.O1). The extract at concentrations of 10. and 50 ${\mu}$g/ml decreased the MDA formation on hydrogen peroxide-induced lipid peroxidation. Conclusions : In conclusion, the extract of Panax ginseng has potent antioxidant activity and increases the survival rate of GC-1 spg cells against $H_20_2$-induced cytotoxicity.

Investigation of Anti-inflammatory and Anti-oxidative Activities of Lonicerae Flos, Citri Pericarpium and Violae Herba Complex (LCVC)

  • Hong Kyoung Kim
    • 대한한의학회지
    • /
    • 제43권4호
    • /
    • pp.52-73
    • /
    • 2022
  • Objectives: The anti-inflammatory and anti-oxidative activities of LCVC (Lonicerae Flos, Citri Pericarpium and Violae Herba Complex) have not been fully elucidated. The purpose of this study was to investigate the mechanisms underlying these effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods: The evaluation of the anti-oxidative activity of LCVC was completed via DPPH and ABTS radical scavenging capacity, FRAP assay, measurement of polyphenol and flavonoid, assessment of ROS and NO levels in LPS-induced RAW 264.7 cells. The anti-inflammatory activity was defined by measuring the production of biomarkers (PGE2, IL-1B, IL-6 and TNF-𝛼), proteins (ERK, JNK, P38, Nrf2, Keap1, HO-1 and NQO1) and expressions of genes (iNOS, COX-2, IL-1𝛽, IL-6, TNF-𝛼, Nrf2, Keap1, HO-1 and NQO1) in LPS-induced RAW 264.7 cells. Results: LCVC have polyphenol and flavonoid contents. The results of DPPH and ABTS free radical scavenging capacity and FRAP assay showed that the anti-oxidative activity was increased. Production of ROS, NO, IL-6, TNF-𝛼, mRNA expressions of IL-1𝛽, IL-6, TNF-𝛼, Keap1, iNOS and COX-2 were decreased, and NQO1, Nrf2, and HO-1 were increased. In protein expression, JNK and Keap1 were decreased, NQO1, Nrf2 and HO-1 were increased, and no relationships were observed with the ERK and P38 by LCVC. Conclusions: These results suggest that LCVC may offer protective effects against LPS-induced inflammatory and oxidative responses through attenuating Nrf2/HO-1 pathway and MAPKs pathway. Therefore, we propose that LCVC has anti-inflammatory and anti-oxidative activities that have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by the over-activation of macrophages.

광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究) (A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation)

  • 이상협;박주석;박중현
    • 상하수도학회지
    • /
    • 제9권4호
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

4-nonylphenol의 오존산화 처리반응에 관한 연구 (A Study on Ozonation of 4-nonylphenol)

  • 이철규
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.736-743
    • /
    • 2017
  • In this study, 4-nonylphenol (4-NP), an endocrine disrupting chemical, was removed by ozone treatment processes under the various experimental conditions including UV irradiation, $TiO_2$ addition. The ozone flow rate and concentration were maintained at $1.0L{\cdot}min^{-1}$ and $70{\pm}5mg{\cdot}L^{-1}$. The pH, COD and TOC of the samples were obtained every 10 minutes for 60 minutes in laboratory scale batch reactor. We found that the combination of UV irradiation and $TiO_2$ addition for ozonation improves the removal efficiency of COD and TOC in 4-NP aqueous solution. In case of the $O_3/UV/TiO_2$ system, COD and TOC were greatly reduced to 85.3 ~ 94.0% and 89.2 ~ 97.2%, respectively. 4-NP degradation rate constants, $k_{COD}$ and $k_{TOC}$, were calculated based on the COD and TOC values. Significantly, $k_{COD}$ and $k_{TOC}$ were improved in the $O_3/UV/TiO_2$ treatment process compared with single $O_3$ process, because the oxidation and the mineralization of 4-NP were increased by generating of the hydroxyl radical. The $k_{COD}$ and $k_{TOC}$ were obtained to be $5.81{\times}10^{-4}{\sim}10.8{\times}10^{-4}sec^{-1}$ and $11.9{\times}10^{-4}{\sim}19.4{\times}10^{-4}sec^{-1}$ in the $O_3/UV/TiO_2$ process. Activation energy ($E_a$) of ozone oxidation reaction based on $k_{COD}$ and $k_{TOC}$ were increased in order of $O_3/UV/TiO_2$ < $O3/UV$ < $O_3/TiO_2$ < $O_3$ process. It was confirmed that the addition of $TiO_2$ and UV irradiation to the ozone oxidation reaction significantly reduced the $E_a$ value and the degradation of 4-NP.

NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구 (Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB)

  • 서원상;오한나;박우정;엄상용;이대우;강상모
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.