• Title/Summary/Keyword: Radiator Panel

Search Result 13, Processing Time 0.019 seconds

THERMAL ANALYSIS OF SURFACE HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (외장형 HEAT PIPE 가 장착된 정지궤도 위성 패널의 열해석)

  • Jun H.Y.;Kim J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.8-13
    • /
    • 2006
  • The north panel of a geostationary satellite is used as one of the main radiators, on which communication equipment or bus equipment are installed. The thermal control of panel is designed by using embedded heat pipes and surface heat pipes (or external heat pipes) to spread out heat dissipated from equipment all over the radiator evenly and finally to reject the heat to the space through the radiator efficiently. This panel is also divided by several areas based on the operating temperature and dissipation of equipment in order to increase heat rejection capability of radiator. The thermal analysis is carried out for the hot case, Winter Solsitce EOL (End Of Life), in order to validate thermal design of the panel utilized 6 surface heat pipes and 8 embedded heat pipes. The sensitivity studies for the heat pipe failure case and no heat pipe case are performed and compared to its normal state. The heat transport capability of heat pipe is also obtained from these calculations.

A Study on the Shape Design of a Radiator Panel for Effective Heat Release (효율적인 열 방출을 하기 위한 방열판의 형상 설계에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.25-30
    • /
    • 2016
  • This study investigates the heat transfer due to a change in the shape of a radiator panel inside a computer. As with models of radiator panels, models have the same surface areas. As the gap between heat transfer surfaces in model 1 becomes wider than those in model 2, the heat transfer at model 1 becomes smoother than that of model 2. By comparing the cooling processes between models 1 and 2 with respect to natural convection, a maximum temperature of $47.432^{\circ}C$ at model 1 becomes lower than that of model 2, at $49.821^{\circ}C$. Within the radiator panel, model 1 has been shown to be more effective than model 2. Accordingly, these results can be effectively applied to the shape design of radiator panels to imbue them with smoother and faster heat transfer through the finite element method.

DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (히트 파이프가 장착된 정지궤도 위성 패널 열해석 프로그램 개발)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young;Chae, Jong-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.416-421
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat dissipation of electronics units and utilize several heat pipe networks to control the temperatures of units and the satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary design stage so several thousands of nodes of more are utilized in order to perform thermal analysis of panel. Generating a large number of nodes(meshes) of the panel takes time and is tedious work because the mesh can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required in order to generate detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of panel thermal analysis program with ist main modules and its main functions.

  • PDF

DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR GEOSTATIONARY SATELLITE PANEL (정지궤도위성 위성체패널 열해석 프로그램 개발)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young;Chae, Jong-Won
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.66-72
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat and utilize several heat pipe networks to control the temperatures of units and the main structures of satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary satellite design stage, so several thousands of nodes or more are utilized in order to perform detailed thermal analysis of panel. Generating a large number of panel nodes takes time and is tedious work because the nodes can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required to generate a detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of the panel thermal analysis program with its main modules and functions.

Thermal Analysis of Satellite Panel Using Carbon Composites (탄소복합재를 이용한 위성 패널의 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Park, Jong-Seok;Park, Kun-Joo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • Thermal control of satellite is mainly based on passive ways, such as the radiator made of aluminum honeycomb core with aluminum skins and OSR (Optical Solar Reflector). Additionally, for the thermal control of high dissipation unit, the aluminum doubler and heat pipe are utilized. Recently, efforts to find advanced thermal materials have been carried out to enhance heat rejection capability without increasing satellite size, weight and cost. This paper handles the carbon composites have high thermal conductivity with light weigh and have been considered as future thermal control materials to replace aluminum based radiator and doubler. Thermal analysis of satellite panel using APG(Annealed Pyrolytic Graphite) and carbon-carbon composites were performed and temperature contours were compared with the conventional thermal control methods.

The Comparison of Space Origination between Korean-Chinese and Chinese Multi-family Housing in China (중국 연변 조선족과 한족피 집합주택 평면구성 비교 연구 - 연길시를 중심으로 -)

  • Kim Jong Young
    • Journal of the Korean housing association
    • /
    • v.15 no.4
    • /
    • pp.55-63
    • /
    • 2004
  • The aims of this research are to find the difference of space origination between Korean-Chinese and Chinese multi-family housing unit plan and to find the main reason to make this difference. To do this research, twenty three different kinds of floor plans were surveyed and examined. The results are as follows; 1. The Chinese-Korean floor plan and Chinese floor plan in Ondol heating system are totally different, although in radiator and floor panel heating system are similar. The inner space origination between two races are different. That is to say, Chinese-Korean likes open space origination and Chinese likes closed space origination. 2. The main reasons to make differences seem to be living style, heating system, constructional method and the trade with South Korea. In the future time, the usage of floor panel heating system will be increased and various kinds of floor plan should be introduced.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

Recycling of PC/ABS Blend Used in Instrument Panel of Automotive (자동차 Instrument Panel에 사용된 PC/ABS계의 재활용)

  • Lee, Chang Hyung;Jung, In Kwon;Lee, Yong Moo;Oak, Sung Hyun;Choi, Hyeong Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.118-123
    • /
    • 1999
  • The recycle of the polycarbonate(PC)/acrylonitrile-butadiene-styrene(ABS) separated from the instrument panel (In-Panel) of the automotive was investigated. The small amount of polyurethane(PU) foam contained in the separated PC/ABS decreased the mechanical properties of the recycled PC/ABS. However, it is found that the PU foam formed the dispered phase of small particles at high temperature ($260^{\circ}C$) under high shear of the twin extruder, whereas it formed the big particles at low extrusion temperature ($220^{\circ}C$). The mechanical properties of the recycled PC/ABS extruded at high temperature was better than those at low temperature, which enabled the recycled PC/ABS seperated from In-Panel to be applied to the radiator grille without the addition of the compatibilizers or virgin PC/ABS. This was ascribed to the smaller particle sizes of the PU foam formed at high extrusion temperature under high shear.

  • PDF

TRANSFER ORBIT THERMAL ANALYSIS FOR COMS (통신해양기상위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.48-54
    • /
    • 2008
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE (위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF