• Title/Summary/Keyword: Radiative Heating

Search Result 100, Processing Time 0.021 seconds

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

An Analysis of Thermal Conductivity of Ceramic Fibrous Insulator by Modeling & Simulation Method I (모델링/시뮬레이션 기법을 이용한 세라믹 섬유 단열재의 열전도도 해석 I)

  • Kang, Hyung;Baek, Yong-Kee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.83-95
    • /
    • 2002
  • Thermal conductivity of ceramic fibrous insulator was analysed and predicted by using the modeling/simulation technique. Ceramic fibrous insulators are widely used as high temperature insulator on account of their lightweight mass and heat resisting properties. Especially it is suitable to protect the high speed aircraft and missiles from severe aero-thermodynamic heating. Thermal conductivity of ceramic fibrous insulator could be determined from the conductive heat transfer and the radiative heat transfer through the insulator. In order to estimate conductive thermal conductivity, homogenization technique was applied, while radiative thermal conductivity was computed by means of random number and radiation probability. Particularly radiation probability can make it possible to estimate the conductivity of fibrous insulator without any experimental constant. The calculated conductivity predicted in the present study have a reasonable accuracy with an average error of 7 percent to experimental data.

Drying Characteristics of Red Peppers by Infrared Heating (원적외선 가열에 의한 고추의 건조특성)

  • Bae, Nae Kyung;Lee, Jong Bung;Sang, Hie Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 5~50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of red peppers. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the red peppers. Energy for moisture evaporation is supplied by the infrared radiant energy. The equations were validated with experimental data on surface temperature and average moisture content of red peppers. Average deviations of predicted surface red peppers temperature and average red peppers moisture from experimental data were 323~353K and 50~80%, respectively. The spectral extinction coefficients in the wavelength range $1.5<{\lambda}<27$ micrometer at 293K for Red Peppers were determined from results of reflection measurements and the four flux radiative heat transfer calculation. The radiation extinction coefficients were obtained from effective drying factor the temperature 373K.

  • PDF

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows

  • Krishna, Penem Mohan;Sharma, Ram Prakash;Sandeep, Naramgari
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1654-1659
    • /
    • 2017
  • The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.

3D Unsteady Numerical Analysis of Slab Heating Characteristics in a Reheating Furnace for Steel Mill Company (제철소용 가열로 내 슬랩 가열 특성의 3차원 비정상 해석)

  • Han, Sang-Heon;Kim, Dong-Min;Baek, Seung-Wook;Kim, Chang-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Numerical analysis code has been developed to investigate the slab heating characteristics in a reheating furnace of a steel mill company. Unsteady 3-Dimensional behaviour can be predicted with the developed code. Premixed flame model is adopted for combustion phenomena and eddy dissipation model is used for turbulent combustion. Non -gray FVM radiation method is used to get a better accurate radiative solution. Slab movement can be fully traced from entrance into a reheating furnace until it#s exit and computation is performed during that period.

  • PDF

Analysis of Temperature Distribution and slip in Rapid Thermal Processing (급속 열처리시 실리콘 웨이퍼의 온도분포와 슬립 현상의 해석)

  • Lee, Hyouk;Yoo, Young-Don;Earmme, Youn-Young;Shin, Hyun-Dong;Kim, Choong-Ki
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.609-620
    • /
    • 1992
  • A numerical solution of temperature and thermally induced stress in a wafer during rapid thermal processing (R.T.P) is obtained, and an analysis of onset and propagation of slip is performed and compared with experiment. In order to calculate temperature distribution of a wafer in R.T.P system, heat conduction equation that incorporated with radiative and convective heat transfer model is solved, and the solution of the equation is calculated numerically using alternating direction implicit (A.D.I) method. In dealing with radiative heat transfer, a partially transparent body that absorbs the radiation energy is assumed and this transparent body undergoes multiple internal reflections and absorptions. Two dimensional (assuming plane stress) thermoelastic constitutive equation is used to calculate thermal stress induced in a wafer and finite element method is employed to solve the equation numerically. The stress resolved in the slip directions on the slip planes of silicon is compared with the yield stress of silicon in order to predict the slip. The result of the analysis shows that the wafer temperature at which slip occurs is affected by the heating rate of the R.T.P system. It is observed that once slip occurs in the wafer, the slip grows.

Heat Resistant Low Emissivity Oxide Coating on Stainless Steel Metal Surface and Characterization of Emissivity (스테인리스강 금속 표면에 내열 저방사 산화물 코팅제 적용과 방사 특성 평가)

  • Lim, Hyung-Mi;Kwon, Tae-Il;Kim, Dae-Sung;Lee, Sang-Yup;Kang, Dong-Pil;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.649-656
    • /
    • 2009
  • Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300${\circ}C$. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600${\circ}C$. The silica sol coating was most effective to suppress thermal oxidation at 600${\circ}C$, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.

COMPUTATIONAL STUDY OF GLASS FIBER DRAWING PROCESS IN A DRAW FURNACE OF OPTICAL FIBER MASS MANUFACTURING SYSTEM (광섬유 대량생산용 인출퍼니스 내 유리섬유 인출공정의 전산해석)

  • Kim, K.;Kwak, H.S.;Kim, D.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.69-73
    • /
    • 2013
  • Mass manufacturing of optical fiber includes the process of very thin glass fiber drawing by heating and softening the high purity silica preform and applying the draw tension on the softened tip of preform neck-down profile in a draw furnace. In this computational study, this process is numerically modeled with simplified geometry of the draw furnace which is comprised of essential parts such as concentric graphite heater, muffle tube, and insulation surrounding the heater. The iterative computational scheme is employed between one-dimensional model of neck-down profile prediction and two-dimensional axisymmetric thermo-fluid CFD computation of radiative heating and working gas convection. The computational results show the experimentally observed neck-down profile in heated section of preform, while yielding the reasonable values of draw tension and heater wattage. Also, this study analyzes and discusses the effects of heating conditions such as heater length and temperature on several important aspects of glass fiber drawing process.

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF