• Title/Summary/Keyword: Radiation technique

Search Result 1,274, Processing Time 0.025 seconds

Influence of Air Temperature during the Growing Period on Water Core Occurrence in 'Hongro' Apple Cultivar and the Mitigation Technique (사과 '홍로' 품종의 생육기 기온이 밀증상 발생에 미치는 영향과 경감기술 연구)

  • Park, Moo-Yong;Song, Yang-Yik;Han, Hyun-Hee;SaGong, Dong-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.100-110
    • /
    • 2009
  • 'Hongro' is one of the important mid-season apple cultivars bred in Korea. The recent occurrence of water core in Hongro and the consequent problems motivated this study. The objectives of our study were to investigate the influence of air temperature during the growing period on water core occurrence in Hongro and to provide methods to mitigate its impact. Based on our field experiments for three years, the results indicated that the occurrence of water core disorder was due to the prolonged exposure to high temperature ($T_a$) of >$30^{\circ}C$ during the ripening period. The rates of occurrence of water core disorder were higher in the fruit whose weight was more than 300g or those located outside the tree canopy and thus exposed to stronger solar radiation. In terms of mitigating the water core occurrence, the application of spraying $CaCl_2$ four times from late July to August was effective. Furthermore, between 1 and 15 August when the rate of occurrence was high with $T_a$ (from 3:00 to 5:00 p.m.) >$30^{\circ}C$, the micro-water sprinkling for 30 minutes starting at 6:00 p.m. with a supplementary spray conducted two hours after the first application drastically reduced the water core occurrence.

A Study on Technique for Image Quality Enhancement to Maximize Container Inspection Efficiency (컨테이너 검사 효율 극대화를 위한 화질 향상 기법 연구)

  • Lee, Chang-Ho;Shin, Ji-Hye;Kim, Jang-Oh;Jung, Young-Jin;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.639-646
    • /
    • 2017
  • The purpose of this study is to present the algorithm to minimize the image noise caused by deterioration of high X-ray container inspection equipment and the faulty detection sensors, and to improvement quality of the container inspection images using MATLAB Toolbox. The daily checking images for the container inspection were used with the subject images and the noise caused by the horizontal and vertical images was evaluated with Root Mean Square (RMS) method, which is the most basic evaluation method of digital radiation image. Also, quality of the improved images was evaluated compared to quality of the orignal images. As a result, all RMS value of the improved images was lower then the original images by a mean of 13.5% in the horizontal images and 18.2% in the vertical images respectively. Also so did RMS value of the improved container images, by a mean of 13.4% in the horizontal images and 19.1% in the vertical images respectively. These findings can be verified objectively and visually and they would help the reading process of the container images be effective in Korea Customs Service.

Radioactivity in soils (I) -A method for the identification of 40K and measurement of beta activity in paddy soils (한국토양(韓國土壤)의 방사능(放射能)에 관(關)한 연구(硏究) (I) - 답토양(畓土壤)의 β 방사능(放射能) 및 40K 핵종동정법(核種同定法) -)

  • Kim, Tai Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.55-66
    • /
    • 1971
  • A method for the identification of and measurement of beta activity due to $^{40}K$ have been developed in this institute. The method is based on the principle of : $$G(t)=\frac{A}{A_{\infty}}=1-e^{-{\eta}t}$$ where: G(t)=fraction of maximum activity A = counting rate of thickness $A_{\infty}$= saturation activity ${\eta}$= mass absorption coefficient of $^{40}K$ By this technique, total beta activity in 92 Korean paddy soil samples collected from various part of the country, have been determined and the results of this analysis reported in this paper. Most of the beta activity in soils have been accounted for to be due to $^{40}K$.

  • PDF

Radial Probe Endobronchial Ultrasound Using Guide Sheath-Guided Transbronchial Lung Biopsy in Peripheral Pulmonary Lesions without Fluoroscopy

  • Hong, Kyung Soo;Ahn, Heeyun;Lee, Kwan Ho;Chung, Jin Hong;Shin, Kyeong-Cheol;Jin, Hyun Jung;Jang, Jong Geol;Lee, Seok Soo;Jang, Min Hye;Ahn, June Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.4
    • /
    • pp.282-290
    • /
    • 2021
  • Background: Radial probe endobronchial ultrasound-guided transbronchial lung biopsy (RP-EBUS-TBLB) has improved the diagnostic yield of bronchoscopic biopsy of peripheral pulmonary lesions (PPLs). The diagnostic yield and complications of RP-EBUS-TBLB for PPLs vary depending on the technique, such as using a guide sheath (GS) or fluoroscopy. In this study, we investigated the utility of RP-EBUS-TBLB using a GS without fluoroscopy for diagnosing PPLs. Methods: We retrospectively reviewed data from 607 patients who underwent RP-EBUS of PPLs from January 2019 to July 2020. TBLB was performed using RP-EBUS with a GS without fluoroscopy. The diagnostic yield and complications were assessed. Multivariable logistic regression analyses were used to identify factors affecting the diagnostic yields. Results: The overall diagnostic accuracy was 76.1% (462/607). In multivariable analyses, the size of the lesion (≥20 mm; odds ratio [OR], 2.06; 95% confidence interval [CI], 1.27-3.33; p=0.003), positive bronchus sign in chest computed tomography (OR, 2.30; 95% CI, 1.40-3.78; p=0.001), a solid lesion (OR, 2.40; 95% CI, 1.31-4.41; p=0.005), and an EBUS image with the probe within the lesion (OR, 6.98; 95% CI, 4.38-11.12; p<0.001) were associated with diagnostic success. Pneumothorax occurred in 2.0% (12/607) of cases and chest tube insertion was required in 0.5% (3/607) of patients. Conclusion: RP-EBUS-TBLB using a GS without fluoroscopy is a highly accurate diagnostic method in diagnosing PPLs that does not involve radiation exposure and has acceptable complication rates.

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

Median Modified Wiener Filter for Noise Reduction in Computed Tomographic Image using Simulated Male Adult Human Phantom (시뮬레이션된 성인 남성 인체모형 팬텀을 이용한 전산화단층촬영 에서의 노이즈 제거를 위한 Median Modified Wiener 필터)

  • Ju, Sunguk;An, Byungheon;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Computed tomography (CT) has the problem of having more radiation exposure compared to other radiographic apparatus. There is a low-dose imaging technique for reducing exposure, but it has a disadvantage of increasing noise in the image. To compensate for this, various noise reduction algorithms have been developed that improve image quality while reducing the exposure dose of patients, of which the median modified Wiener filter (MMWF) algorithm that can be effectively applied to CT devices with excellent time resolution has been presented. The purpose of this study is to optimize the mask size of MMWF algorithm and to see the excellence of noise reduction of MMWF algorithm for existing algorithms. After applying the MMWF algorithm with each mask sizes set from the MASH phantom abdominal images acquired using the MATLAB program, which includes Gaussian noise added, and compared the values of root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC), and universal image quality index (UQI). The results showed that RMSE value was the lowest and PSNR, CC and UQI values were the highest in the 5 x 5 mask size. In addition, comparing Gaussian filter, median filter, Wiener filter, and MMWF with RMSE, PSNR, CC, and UQI by applying the optimized mask size. As a result, the most improved RMSE, PSNR, CC, and UQI values were showed in MMWF algorithms.

Sun-induced Fluorescence Data: Case of the Rice Paddy Field in Naju (논벼에서 관측된 태양 유도 엽록소 형광 자료: 나주에서 2020년 6월 10일부터 10월 5일까지)

  • Ryu, Jae-Hyun;Jang, Seon Woong;Kim, Hyunki;Moon, Hyun-Dong;Sin, Seo-Ho;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.82-88
    • /
    • 2021
  • Sun-induced fluorescence (SIF) retrieval using remote sensing technique has been used in an effort to understand the photosynthetic efficiency and stress condition of vegetation. Although optical devices and SIF retrieval methodologies were established in order to retrieve SIF, the SIF measurements are domestically sparse. SIF data of paddy rice w as measured in Naju, South Korea from June 10, 2020 to October 5, 2020. The SIFs based red (O2A) and far-red (O2B) w ere retrieved using a spectral fitting method and an improved Fraunhofer line depth, and photosynthetically active radiation was also produced. In addition, the SIF data was filtered considering solar zenith angle, saturation conditions, the rapid and sudden change of solar irradiance, and sun glint. The provided SIF data can help to understand a SIF product and the filtering method of SIF data can contribute to producing high-quality SIF data.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT (MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구)

  • Ga-Hyun, Kim;Ji-Soo, Kim;Chan-Deul, Kim;Joon-Pyo, Lee;Joo-Wan, Hong;Dong-Kyoon, Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study aims to evaluate the usefulness of Deep Learning Image Reconstruction (TrueFidelity, TF), the image quality of existing Filtered Back Projection (FBP) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) were compared. Noise, CNR, and SSIM were measured by obtaining images with doses fixed at 17.29 mGy and altered to 10.37 mGy, 12.10 mGy, 13.83 mGy, and 15.56 mGy in reconstruction techniques of FBP, ASIR-V 50%, and TF-H. TF-H has superior image quality compared to FBP and ASIR-V when the reconstruction technique change is given at 17.29 mGy. When dose changes were made, Noise, CNR, and SSIM were significantly different when comparing 10.37 mGy TF-H and FBP (p<0.05), and no significant difference when comparing 10.37 mGy TF-H and ASIR-V 50% (p>0.05). TF-H has a dose-reduction effect of 30%, as the highest dose of 15.56 mGy ASIR-V has the same image quality as the lowest dose of 10.37 mGy TF-H. Thus, Deep Learning Reconstruction techniques (TF) were able to reduce dose compared to Iterative Reconstruction techniques (ASIR-V) and Filtered Back Projection (FBP). Therefore, it is considered to reduce the exposure dose of patients.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.