• Title/Summary/Keyword: Radiation spectroscopy detector

Search Result 45, Processing Time 0.027 seconds

Fabrication and Evaluation of Spectroscopic Grade Quasi-hemispherical CdZnTe Detector

  • Beomjun Park;Kyungeun Jung;Changsoo Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.85-90
    • /
    • 2024
  • Background: This study focuses on the fabrication and characterization of quasi-hemispherical Cd0.9Zn0.1Te (CZT) detector for gamma-ray spectroscopy applications, aiming to contribute to advancements in radiation measurement and research. Materials and Methods: A CZT ingot was grown using the vertical Bridgman technique, followed by proper fabrication processes including wafering, polishing, chemical etching, electrode deposition, and passivation. Response properties were evaluated under various external bias voltages using gamma-ray sources such as Co-57, Ba-133, and Cs-137. Results and Discussion: The fabricated quasi-hemispherical CZT detector demonstrated sufficient response properties across a wide range of gamma-ray energies, with sufficient energy resolution and peak distinguishability. Higher external bias voltages led to improved performance in terms of energy resolution and peak shape. However, further improvements in defect properties are necessary to enhance detector performance under low bias conditions. Conclusion: This study underscores the efficacy of quasi-hemispherical CZT detector for gamma-ray spectroscopy, providing valuable insights for enhancing their capabilities in radiation research field.

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.

Design of a Radiation Spectroscopy Detector using a Spherical Scintillator and Development of a Radiation Source Position Tracking System (구형의 섬광체를 이용한 방사선 스펙트로스코피 검출기 설계 및 방사선원 위치 추적 시스템 개발)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • A radiation spectroscopy detector using a spherical scintillator was designed, and a system was developed to track the position of a radiation source using several detectors. The position tracking algorithm was designed based on the theory that the number of radiations decreases according to the inverse square law of distance, and the position of the radiation source was calculated by measuring the number of radiations generated from the radiation sources at various positions. The radiation generated from the radiation source is detected by different coefficients in each detector, and the difference between these detected coefficients varies in proportion to the inverse square of the distance. Geant4 Application for Tomographic Emission (GATE) simulation was performed to verify and evaluate the performance of the designed radiation source position tracking system, and radiation generated from radiation sources placed at different positions was counted with each detector. The number of measured radiations was tracked through the radiation source position tracking algorithm, and the error between the actual radiation source position and the position calculated by the algorithm was evaluated. The error between the position of the actual radiation source and the calculated position was measured as an average of 0.11% on the X-axis and 0.37% on the Y-axis, and it was verified that the position can be measured very accurately.

Signal Generation Due to Alpha Particle in Hydrogenated Amorphous Silicon Radiation Detectors

  • Kim, Ho-Kyung;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.397-404
    • /
    • 1996
  • The hydrogenated amorphous silicon (a-Si : H) holds good promise for radiation detection from its inherent merits over crystalline counterpart. For the application to alpha spectroscopy, the induced charge collection in a-Si : H pin detector diodes ons simulated based on a relevant non-uniform charge generation model. The simulation was peformed for the initial energy and the range of incident alpha particles, detector thickness and the operational parameters such as the applied reverse bias voltage and shaping time. From the simulation, the total charge collection was strongly affected by hole collection as expected. To get a reasonable signal generation, therefore, the hole collection should be seriously considered for detector operational parameters such as shaping time and reverse voltage etc. For the spectroscopy of alpha particle from common alpha sources, the amorphous silicon should have about 70${\mu}{\textrm}{m}$ thickness.

  • PDF

Development of Spectroscopy Toolkit for Spectrum Measurement Experiments Using a CsI(Tl)/PIN Diode Detector

  • Nam, Young-Mi;Kim, Han-Soo;Ha, Jang-Ho;Lee, Jae-Hyung
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.77-80
    • /
    • 2010
  • The spectroscopy toolkit has been developed and tested. The toolkit consists of a CsI(Tl)/PIN diode detector, integrated electronics, and a multi.channel.analyzer and its size was 40 cm(width) by 20 cm(length) by 6 cm(high). It is compact, very portable and simpler and cheaper compared to the conventional spectroscopy system. The gamma energy resolutions of the toolkit were 7.9% for the 660 keV of $^{137}Cs$ and 4.9% for 1,332 keV of $^{60}Co$ respectively. The linearity for gamma energies was good. When the energy spectrum of a ceramic sample containing $^{232}Th$ was measured with the spectroscopy toolkit for 20 minutes, there were significant peaks of the heavy metal. These results show that the resolution of the spectroscopy toolkit is sufficient to accumulate a quality spectrum in a few minutes by using weak, encapsulated commercial sources. Furthermore a toolkit experiment that how to measure energy spectra using the toolkit, and how to identify specific isotopes in a pottery piece, could be widely adopted for education and even for more sophisticated and higher level experiments.

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

The Electrical and Radiation Detection Properties of $Au/Cd_{1-x}Zn_x/Te(x=20%)/Au$ Structure ($Au/Cd_{1-x}Zn_x/Te(x=20%)/Au$ 구조의 전기적 특성 및 방사선 탐지 특성)

  • 최명진;왕진석
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 1997
  • Bulk type radiation detector of Au/Cd$_{1-x}$ Zn$_{x}$Te(x=20%)/Au structure using Cd$_{1-x}$ Zn$_{x}$Te(x=20%) wafer(3x4xl mm$^{3}$) grown by high pressure Bridgman method has been developed. We etched wafer surfaces with 2% Br-methanol solution and coated gold thin film on the surfaces by electroless deposition method for 5 min. in 49/o HAuCI$_{3}$ 4H20 solution. Initial etch rates of Cd, Zn and Te were 46%, 12% and 42% respectively. After etched, the surface of wafer was slightly revealed to Te rich condition. The leakage current was increased with etch time, but it didn't exceed 3nA at 50volt. The thickness of Au film was about 100nm by Rutherford Backscattering Spectroscopy(RBS). The resolution were 6.7% for 22.1 keV photon from 109 $^{109}$ Cd and 8.2% for 59.5 keV photon from $^{241}$ Am. The radiation detector such as Au/Cd$_{1-x}$ Zn$_{x}$Te(x=20%)/Au structure was more effective to monitor the low energy gamma radiation.iation.

  • PDF

ANALYSIS OF CHARGE COLLECTION EFFICIENCY FOR A PLANAR CdZnTe DETECTOR

  • Kim, Kyung-O;Kim, Jong-Kyung;Ha, Jang-Ho;Kim, Soon-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.723-728
    • /
    • 2009
  • The response property of the CZT detector ($5{\times}5{\times}5\;mm^3$), widely used in photon spectroscopy, was evaluated by considering the charge collection efficiency, which depends on the interaction position of incident radiation, A quantitative analysis of the energy spectra obtained from the CZT detector was also performed to investigate the tail effect at the low energy side of the full energy peak. The collection efficiency of electrons and holes to the two electrodes (i.e., cathode and anode) was calculated from the Hecht equation, and radiation transport analysis was performed by two Monte Carlo codes, Geant4 and MCNPX. The radiation source was assumed to be 59.5 keV gamma rays emitted from a $^{241}Am$ source into the cathode surface of this detector, and the detector was assumed to be biased to 500 V between the two electrodes. Through the comparison of the results between the Geant4 calculation considering the charge collection efficiency and the ideal case from MCNPX, an pronounced difference of 4 keV was found in the full energy peak position. The tail effect at the low energy side of the full energy peak was confirmed to be caused by the collection efficiency of electrons and holes. In more detail, it was shown that the tail height caused by the charge collection efficiency went up to 1000 times the pulse height in the same energy bin at the calculation without considering the charge collection efficiency. It is, therefore, apparent that research considering the charge collection efficiency is necessary in order to properly analyze the characteristics of CZT detectors.

Equivalent Noise Charge Measurements in Hydrogenated Amorphous Silicon Radiation Detectors

  • Kim, Ho-Kyung;Hur, Woo-Sung;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.973-979
    • /
    • 1995
  • The input equivalent noise charge (ENC) of hydrogenated amorphous silicon radiation detector diodes was measured and analyzed. The noise sources of amorphous silicon diodes were analyzed into three sources; shot noise, flicker noise and thermal noise from the contact resistance. By comparing the measured ENC with the calculated signal charge in uniform generation case, the signal-to-noise ratio (S/N) for the sample diodes is estimated as a function of the detector bias and the shaping time of Gaussian pulse shaper. The maximum S/N occurred at the bias level just above the full depletion voltage for shaping time of 2∼3 ${\mu}$sec. The developed method is useful in optimum design or amorphous silicon p-i-n diodes for charged particulate radiation spectroscopy.

  • PDF

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.