• Title/Summary/Keyword: Radiation response genes

Search Result 45, Processing Time 0.027 seconds

Analysis of Salmonella Pathogenicity Island 1 Expression in Response to the Changes of Osmolarity

  • LIM, SANG-YONG;YONG, KYEONG-HWA;RYU, SANG-RYEOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.175-182
    • /
    • 2005
  • Abstract Salmonella pathogenicity island 1 (SPI1) gene expression is regulated by many environmental signals such as oxygen, osmolarity, and pH. Here, we examined changes in the expression level of various regulatory proteins encoded within SPI1 in response to three different concentrations of NaCl, using primer extension analysis. Transcription of all the regulatory genes tested was activated most when Salmonella were grown in Luria Broth (LB) containing 0.17 M NaCl. The expression of hilA, invF, and hilD was decreased in the presence of 0.47 M NaCl or in the absence of NaCl, while hilC expression was almost constant regardless of the NaCl concentration when Salmonella were grown to exponential phase under low-oxygen condition. The reduced expression of hilA, invF, and hilD resulted in lower invasion of hilC mutant to the cultured animal cells when the mutant was grown in the presence of 0.47 M NaCl or in the absence of NaCl prior to infection. Among the proteins secreted via the SPI1-type III secretion system (TTSS), the level of sopE2 expression was not influenced by medium osmolarity. Various effects of osmolarity on virulence gene regulation observed in this study is one example of multiple regulatory pathways used by Salmonella to cause infection.

The Role of Fas/FasL in Radiation Induced Apoptosis in vivo (방사선에 의한 Apoptosis에서 Fas/Fas L의 역할)

  • Kim, Sung-Hee;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.222-226
    • /
    • 2003
  • Purpose: The interaction of the Fas: Fas ligand has been recognized to play an important role in radiation induced apoptosis. The purpose of this study was to investigate the role of Fas and Fas ligand mutations, in radiation-induced apoptosis in vivo. Materials and Methods: Mice with a mutation in the Fas ($C57BL/6J-Fas^{lpr}$) and its normal control (C57BL/6J) and the Fas ligand ($C3H/HeJ-Fas^{gld}$) and its normal control (C3H/HeJ), were used in this study. Eight-week old male mice were given whole body radiation. After irradiation, the mice were killed at various time intervals, and their spleens collected. Tissue sample was stained with hematoxylin-eosin, and the numbers of apoptotic cells scored. The regulating molecules of apoptosis including the p53, Bcl-2, Bax, $Bcl-X_L\;and\;Bcl-X_s$ genes were also analyzed by Western blotting. Results: With 2.5 Gy and 10 Gy of irradiation, the levels of apoptosis were lower in the $C57BL/6J-Fas^{lpr}\;and\;C3H/HeJ-Fas^{gld}$ mice than in the control mice (p<0.05). With the expression of apoptosis regulating molecules, the Bax was increased in both the C57BL/6J and C3H/HeJ mice in response to radiation; the peak levels of Bax in the C57BL6J and C3H/HeJ were 3 and 3.3-fold higher after 8hr, respectively. However the Bax was not increased in either the $C57BL/6J-Fas^{lpr}\;or\;C3H/HeJ-Fas^{gld}$mice. The p53, Bcl-X_L,\;Bcl-X_S$and Bcl-2 showed no significant changes in the $C57BL/6J-Fas^{lpr},\;C3H/HeJ-Fas^{gld}$, C57BL/6J and C3H/HeJ mice. Conclusion: The levels of radiation-induced apoptosis were lower in the lpr and gld, than the control mice, which seemed to be related to the level of Bax activation due to the radiation in the lpr and gld mice. This result suggests that Fas/Fas L plays an important role in radiation-induced apoptosis in vivo.

Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant (방사선 유도 내염성 증진 사료용 옥수수 돌연변이체 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jeong, Namhee;Jin, Mina;Son, Beom-Young;Kim, Dool-Yi
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.318-325
    • /
    • 2019
  • Salt stress is a significant factor limiting growth and productivity in crops. However, little is known about the response and resistance mechanism to salt stress in maize. The objective of this research was to develop an enhanced salt-tolerant silage maize by mutagenesis with gamma radiation. To generate gamma radiation-induced salt-tolerant silage maize, we irradiated a KS140 inbred line with 100 Gy gamma rays. Salt tolerance was determined by evaluating plant growth, morphological changes, and gene expression under NaCl stress. We screened 10 salt-tolerant maize inbred lines from 2,248 M2 mutant populations and selected a line showing better growth under salt stress conditions. The selected 140RS516 mutant exhibited improved seed germination and plant growth when compared with the wild-type under salt stress conditions. Enhanced salt tolerance of the 140RS516 mutant was attributed to higher stomatal conductance and proline content. Using whole-genome re-sequencing analysis, a total of 328 single nucleotide polymorphisms and insertions or deletions were identified in the 140RS516 mutant. We found that the expression of the genes involved in salt stress tolerance, ABP9, CIPK21, and CIPK31, was increased by salt stress in the 140RS516 mutant. Our results suggest that the 140RS516 mutant induced by gamma rays could be a good material for developing cultivars with salt tolerance in maize.

Differential Growth Response and Gene Expression in Relation to Capsidiol Biosynthesis of Red Pepper Plant and Cultured Cells by γ-Ray and UV Stress (방사선과 자외선에 대한 고추 식물체 및 배양세포의 생장반응과 Capsidiol 생합성 유전자의 발현 차이)

  • An, Jung-Hee;Kim, Jae-Sung;Jeong, Jeong-Hag;Oh, Sei-Myoung;Kwon, Soon-Tae
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.201-206
    • /
    • 2003
  • Differential responses of red pepper plant and cultured cells to enhanced ${\gamma}$-ray($^{60}$ Co) and ultraviolet(UV) stress were investigated. In seed treatment, 1 Gy of ${\gamma}$-ray increased seedling dry weight up to 19.1%, but 50 Gy treatment markedly ingibited seed germination and subsequent growth of seedling. UV treatment to seed did not change the germination ability of seeds and the growth of seedlings regardless of duration of UV treatment until 24 hrs. In case of UV treatment to seedlings, plant injury was seriously progressed even after the seedlings were returned to no UV condition, and eventually all the leaves showed chlorosis by the stress. However, progress of plant injury by ${\gamma}$-ray stress slower than that caused by UV stress, and even at the high dose of ${\gamma}$-ray 50 Gy, did not caused the cholrosis of stressed plant leaf. Amount of electrolytes leakage from plant leaf by UV treatment for 24hrs was increased up to 28.8 folds in comparison with untreated control, whereas that of 50 Gy of ${\gamma}$-ray was increased only 1.2 folds. UV stress induced the production of capsidiol, antimicrobial phytoalexin, by activation of gene expression involved in capsidiol biosynthesis, such as sesquiterpene cyclase and cyclase and cytochrome P450 hydroxylase in the leaf and cultured cell, but ${\gamma}$-ray stress induced neither the production of capsidiol nor expression of the genes.

Downregulation of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in human keratinocytes by melanogenic inhibitors

  • Ahn, Kwang-Seok;Lee, Jinseon;Kim, Yeong-Shik
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.780-803
    • /
    • 2003
  • Exposure of skin cells, particularly keratinocytes to various nuclear factor-kappaB ($\textrm{NF}_{-{\kappa}}\textrm{B}$) activators [e.g. tumor necrosis factor-$\alpha$, interleukin-1, lipopolysaccharides, and ultraviolet light] leads to phosphorylation and degradation of the inhibitory protein, $\textrm{I}_{{\kappa}}\textrm{B}$. Liberated $\textrm{NF}_{-{\kappa}}\textrm{B}$ is translocated into the nucleus where it can change or alter expression of target genes, resulting in the secretion of extracellular signaling molecules including melanotrophic factors affecting melanocyte. In order to demonstrate the possible role of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation on the synthesis of melanotrophic factors from the keratinocytes, the activities of $\textrm{NF}_{-{\kappa}}\textrm{B}$ induced by melanogenic inhibitors (MIs) were determined in human HaCaT keratinocytes transfected with $\textrm{pNF}_{-{\kappa}}\textrm{B}$-SEAP-NPT plasmid. Transfectant cells released the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the $\textrm{NF}_{-{\kappa}}\textrm{B}$ activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selection marker for geneticin resistance. MIs such as niacinamide, kojic acid, hydroquinone, resorcinol, arbutin, and glycolic acid were preincubated with transfectant HaCaT cells for 3 h and then ultraviolet B (UVB) was irradiated. $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation was measured with the SEAP reporter gene assay using a fluorescence detection method. Of the Mis tested, kojic acid ($IC_{50}$/ = 60 $\mu$M) was found to be the most potent inhibitor of UVB-upregulating $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in transfectant HaCaT cells, which is followed by niacinamide ($IC_{50}$/= 540 $\mu$M). Pretreatment of the transfectant HaCaT cells with the Mis, especially kojic acid and niacinamide, effectively lowered $\textrm{NF}_{-{\kappa}}\textrm{B}$ binding measured by electrophoretic mobility shift assay. Furthermore, these two inhibitors remarkably reduced the secretion level of IL-6, one of melanotrophic factors, triggered by UV-radiation of the HaCaT cells. These observations suggest that Mis working at the in vivo level might act partially through the modulation of the synthesis of melanotrophic factors in keratinocyte.

  • PDF