• Title/Summary/Keyword: Radiation reduction strategies

Search Result 14, Processing Time 0.023 seconds

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING

  • Olsher Richard H.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of variance reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered in the areas of source definition, skyshine, streaming, and transmission.

Research on the Suitability of Nuclear Sharing Strategy of South Korea through the Nuclear Strategy of U.S. NPR

  • Dong-Kwon Cho;Sin-Young Yu;Sung-Gil Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.451-456
    • /
    • 2023
  • The subject of this research is what is the most effective strategy of the nuclear sharing strategy of South Korea through the nuclear strategy that the U.S. is pursuing now. The U.S. Nuclear Strategy-related change can be found in a Nuclear Posture Review (NPR) report released by the U.S. The first NPR was announced in 1994 and after that, the U.S. has additionally announced a total of four NPRs along with administration changes. The change in the U.S. nuclear strategy and nuclear power are considered both deterrence and offset strategies. It can be summarized in two ways. First, by maintaining overwhelming nuclear power against the enemy, the U.S. is to lead nuclear advantage that is the core of the U.S. nuclear strategy. Second, the U.S. is to limit the competition of nuclear power with nations seeking to challenge the U.S. nuclear power advantage. Additionally, the U.S. is to actively sign an agreement with nations on the reduction and restriction of nuclear weapons. Through the NPR of the U.S., South Korea should know its unclear power and strategy and have an effective nuclear strategy of South Korea. Therefore, this research is to deal with the suitability of the nuclear sharing strategy with the U.S., which is one of the various nuclear strategies of South Korea.

Estimating the urban radiation heat flux distribution and the reduction effect of building and tree shade (건물과 수목의 그림자에 의한 도시의 열 분포 산정 및 저감효과 연구)

  • Park, Chae-Yeon;Lee, Dong-Kun;Yoon, June-Ha
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.6
    • /
    • pp.1-13
    • /
    • 2018
  • Mapping radiation heat flux of urban area is essential for urban design and landscape planning. Because controlling urban geometry and generating green space are important urban design strategies for reducing urban heat, urban planner and designer need to recognize the micro urban heat distribution for adequate urban planning. This study suggests a new methodology for mapping urban radiation heat flux in a micro scale considering buildings and trees' shade. For doing that, firstly, we calculate net radiation for each urban surfaces (building, road (not shaded, building shaded, tree shaded), ground (not shaded, building shaded, tree shaded), tree (not shaded, building shaded)). Then, by multiplying the area ratio of surfaces to the net radiation, we can obtain the radiation heat flux in micro-scale. The estimated net radiation results were found to be robust with a $R^2$ of 90%, which indicates a strong explanatory power of the model. The radiation heat flux map for 12h $17^{th}$ August explains that areas under the building and tree have lower net radiation heat flux, indicating that shading is a good strategy for reducing incident radiation. This method can be used for developing thermal friendly urban plan.

A MODEL FOR PROTECTIVE BEHAVIOR AGAINST THE HARMFUL EFFECTS OF RADIATION FOR RADIOLOGICAL TECHNOLOGISTS IN MEDICAL CENTERS

  • Han, Eun-Ok;Moon, In-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Protective behavior of radiological technologists against radiation exposure is important to achieve reduction of the patient doses without compromising medical achievements. This study attempts to provide a basic model for the sophisticated intervention strategy that increases the level of the protective behavior of the technologists. The model was applied to real situations in Korea to demonstrate its utility. The results of this study are summarized as follows: First, the protective environment showed the highest relationship in the factors considered, r=0.637 (p<0.01). Secondly, the important factors were protective environment in environment characteristics, expectation for the protective behavior 0.228 (p<0.001), self-efficacy 0.142 (p<0.001), and attitude for the protective behavior 0.178 (p<0.001) in personal characteristics, and daily patient -0.112 (p<0.001) and number of the participation in the education session for the protective behavior 0.074 (p<0.05). Thirdly, the final protective behavior model by a path analysis method had direct influence on the attitude 0.171 (p<0.01) and environment 0.405 (p<0.01) for the protective behavior, self efficacy 0.122 (p<0.01), expectation for the protective behavior 0.16 (p<0.01), and self-efficacy in the specialty of projects 0.154 (p<0.01). The acceptance of the model determined by the absolute fit index (GFI), 0.969, and by the incremental fit index (CFI), 0.943, showed very significant levels. Value of $x^2$/df that is a factor applied to verify the acceptance of the model was 37, which implies that the result can be accepted in the desirable range. In addition, the parsimonious fit index configured by AGFI (0.890) and TLI (0.852) was also considered as a scale that accepts the model in practical applications. In case of the establishment of some specific intervention strategies based on the protective behavior model against harmful radiation effects proposed in this study, the strategy will provide an effective way to prevent medical harmful radiation effects that could cause severe injuries to people.

Treatment Deintensification for Human Papillomavirus-Associated Oropharyngeal Cancer: Focused Review of Published Data (인유두종바이러스 연관 구인두암의 치료 약화 전략: 보고된 결과를 중심으로 분석)

  • Jin Ho, Kim
    • Korean Journal of Head & Neck Oncology
    • /
    • v.38 no.2
    • /
    • pp.7-13
    • /
    • 2022
  • Human papillomavirus (HPV) is a causative agent for a subset of oropharyngeal cancer (OPC). The current standard of care (SOC) for locally advanced OPC is 70 Gy definitive radiotherapy (RT) concurrent with cisplatin, which entails significant proportions of acute and late grade 3 or higher toxicities. Accordingly, discovery of favorable prognosis of HPV-related OPC has led to enthusiasm to attenuate subspecialties therapy in multidisciplinary treatment. Diverse deintensification strategies were investigated in multiple phase 2 trials with an assumption that attenuated treatments result in comparable oncologic outcome and less toxicities compared with SOC. Several trials on chemotherapy deintensification revealed that concomitant administration of cisplatin is not to be omitted or substituted for cetuximab without compromising progression-free survival or local control. A transoral robotic surgery (TORS) is investigated as alternative local treatment, but TORS plus SOC or mild deintensified adjuvant RT showed similar toxicities and inferior oncologic outcomes compared with SOC definitive RT or moderately deintensified RT. However, it has been reported that TORS plus deintensified 30-36 Gy adjuvant RT results in excellent outcome and less late toxicity compared with SOC adjuvant RT. Several phase 2 trials reported apparently equivalent progression-free survival and local control and similar adverse effects with moderately deintensified 60 Gy RT compared with SOC 70 Gy RT. Further dose reduction below 60 Gy has been investigated using biology-directed approaches, which use response to induction chemotherapy or metabolic images to triage HPV-positive OPC for deintensified RT. In summary, these trials provide valuable insights for future directions. Available evidence consistently showed that moderately deintensified RT is effective and safe for HPV-positive OPC in both definitive and adjuvant settings. Concurrent cisplatin remains an essential component without which progression-free survival is significantly compromised for advanced HPV-positive OPC. A simple incorporation of TORS to SOC may be detrimental for oncologic outcome without anticipated toxicity reduction. Given the lack of level 1 evidence, it is prudent to curb an unjustified deviation from the current SOC and limit any deintensified strategies to clinical trials and adhere to the current SOC.

New low-complexity segmentation scheme for the partial transmit sequence technique for reducing the high PAPR value in OFDM systems

  • Jawhar, Yasir Amer;Ramli, Khairun Nidzam;Taher, Montadar Abas;Shah, Nor Shahida Mohd;Audah, Lukman;Ahmed, Mustafa Sami;Abbas, Thamer
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.699-713
    • /
    • 2018
  • Orthogonal frequency division multiplexing (OFDM) has been the overwhelmingly prevalent choice for high-data-rate systems due to its superior advantages compared with other modulation techniques. In contrast, a high peak-to-average-power ratio (PAPR) is considered the fundamental obstacle in OFDM systems since it drives the system to suffer from in-band distortion and out-of-band radiation. The partial transmit sequence (PTS) technique is viewed as one of several strategies that have been suggested to diminish the high PAPR trend. The PTS relies upon dividing an input data sequence into a number of subblocks. Hence, three common types of the subblock segmentation methods have been adopted - interleaving (IL-PTS), adjacent (Ad-PTS), and pseudorandom (PR-PTS). In this study, a new type of subblock division scheme is proposed to improve the PAPR reduction capacity with a low computational complexity. The results indicate that the proposed scheme can enhance the PAPR reduction performance better than the IL-PTS and Ad-PTS schemes. Additionally, the computational complexity of the proposed scheme is lower than that of the PR-PTS and Ad-PTS schemes.

Optimum Automated Control Strategies of Inside Slat-type Blind considering Visual Comport and Building Energy Performance (재실자의 시쾌적과 건물에너지성능을 고려한 슬랫형 블라인드 자동제어전략)

  • Oh, Myung-Hwan;Yoon, Jong-Ho;Shin, U-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.187-195
    • /
    • 2011
  • Glass Envelope is vulnerable to insulation performance and controling solar radiation. Insulation performance is consistently improving these days due to recent building energy saving policy in South Korea. However, solar control at glass envelope is still limited to meeting requirements of ideal high performance. Generally, Inside Blind plays an important role of solar control instead of glass which have a characteristics of transmitted solar. Unfortunately, most of them are controled by occupants and which method is not resonable in building energy. Therefore, achieving the high efficient performance building, automated control blind system considering reduction of building loads have to be adopted. Furthermore, considering occupants visual comport about removing discomfort glare is also essential.

  • PDF

Reviews of Radiation Protection and Shielding for Computed Tomography in Foreign Countries (외국의 컴퓨터 단층촬영 장치의 방어시설 문헌 조사)

  • Jahng, Geon-Ho;Yang, Dal-Mo;Sung, Dong-Wook;Lee, Kwang-Yong;Kim, Hyeog-Ju
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.276-284
    • /
    • 2008
  • A computed tomography (CT) is a powerful system for the effectively fast and accurate diagnosis. The CT system, therefore, has used substantially and developed for improving the performance over the past decade, resulting in growing concerns over the radiation dose from the CT. Advanced CT techniques, such as a multidetector row CT scanner and dual energy or dual source CT, have led to new clinical applications that could result in further increases of radiation does for both patients and workers. The objective of this study was to review the international guidelines of the shielding requirements for a CT facility required for a new installation or when modifying an existing one. We used Google Search Engine to search the following keywords: computed tomography, CT regulation or shield or protection, dual energy or dual source CT, multidetector CT, CT radiation protection, and regulatory or legislation or regulation CT. In addition, we searched some special websites, that were provided for sources of radiation protection, shielding, and regulation, RSNA, AAPM, FDA, NIH, RCR, ICRP, IRPA, ICRP, IAEA, WHO (See in Table 1 for full explanations of the abbreviations). We finally summarized results of the investigated materials for each country. The shielding requirement of the CT room design was very well documented in the countries of Canada, United States of America, and United Kingdom. The wall thickness of the CT room could be obtained by the iso-exposure contour or the point source method. Most of documents provided by international organizations were explained in importance of radiation reduction in patients and workers. However, there were no directly-related documents of shielding and patient exposure dose for the dual energy CT system. Based international guidelines, the guideline of the CT room shielding and radiation reduction in patients and workers should be specified for all kinds of CT systems, included in the dual energy CT. We proposed some possible strategies in this paper.

  • PDF

Dose Assessment of Orbital Adnexa in Electron Beam Therapy for Orbital Lymphoma (안와림프종의 전자선 치료 시 안구 부속기관에 대한 선량평가)

  • Dong Hwan Kim;Yong In Cho
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2024
  • Radiation side effects and complications on the ocular adnexa during electron beam therapy for orbital lymphoma can increase the incidence of posterior subcapsular cataracts. This study simulated a medical linear accelerator and a mathematical model of the eye using monte carlo simulations to evaluate the dose to the ocular adnexa and compare the shielding effectiveness on different parts of the ocular adnexa based on lens shield thickness. The dose assessment results of the ocular adnexa showed that the lens's sensitive area had the highest absorbed dose distribution when no shield was used, followed by the lens's non-sensitive area, the anterior chamber, vitreous humor, cornea, and eyelid in descending order. With the use of a shield, a 2 mm thick shield demonstrated a dose reduction effect of over 90% in the lens's sensitive area, over 83% in the non-sensitive area and anterior chamber, and a dose reduction effect of 30 to 62% in the vitreous body, cornea, and eyelid. For dose reduction in the lens's sensitive area during electron beam therapy for orbital lymphoma, it is necessary to use a shield of at least 2 mm thickness. Additionally, shielding strategies considering the thickness and area of the shield for other ocular adnexa besides the lens are required.

A Risk Assessment for A Korean Standard Nuclear Power Plant (한국표준형 원전의 중대사고시 MACCS 코드를 이용한 위험성평가)

  • Hwang, Seok-Won;Jae, Moo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.189-197
    • /
    • 2003
  • The Level 3 PSA being termed accident consequence analysis is defined to assess effects on health and environment caused by radioisotopes released from severe accidents of nuclear power plants. In this study consequence analysis on health effects depending on release characteristics of radioisotopes has been peformed using the 3 MACCS code in severe accidents. The results of this study may contribute to identifying the relative importance of various parameters occurred in consequence analysis as well as to assessing risk reduction accident management strategies. Especially three parameters for the purpose of consequence analysis, such as the release height, the heat content, and the duration time, are used to analyze the variation of early fatalities and latent cancer fatalities. Also, in this study risk assessment using the concept, 'products of uncertainty and consequences', has been performed using consequence of MACCS and frequency on source term category 19 scenarios from IPE (Individual Plant Examination) analysis.