• Title/Summary/Keyword: Radiation protection materials

Search Result 428, Processing Time 0.027 seconds

Comparison between a 13-session and One-time Program on Korean Elementary, Middle and High School Students' Understanding of Nuclear Power

  • Han, Eun Ok;Choi, YoonSeok;Lim, YoungKhi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Background: To help future generations make accurate value judgments about nuclear power generation and radiation, this study will provide an effective education plan suitable for South Korea by applying and analyzing programs for the understanding of nuclear power within the diversely operated programs in the current Korean education system. Materials and Methods: This study analyzed the difference in educational effects by operating a 13-session regular curriculum for one semester and a one-session short-term curriculum from March to July 2016. Results and Discussion: As a result of operating a 13-session model school and a one-time educational program to analyze behavior changes against the traditional learning model, it was found that all elementary, middle and high school students showed higher acceptability of nuclear power in South Korea. The variation was greater for the model school than the short-term program. Conclusion: To prevent future generations from making biased policy decisions stemming from fear regarding nuclear power, it is necessary to bolster their value judgments in policy decisions by acquiring sufficient information about nuclear power generation and radiation through educational programs.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Evaluation of Residual Radiation and Radioactivity Level of TRIGA Mark-II, III Research Reactor Facilities for Safe Decommissioning (TRIGA Mark-II, III 연구로 시절의 폐로를 위한 시설의 잔류 방사선/능 평가)

  • Lee, B.J.;Chang, S.Y.;Park, S.K.;Jung, W.S.;Jung, K.J.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.109-120
    • /
    • 1999
  • Residual radiation and radioactivity level in TRIGA Mark-II, III research reactors and facilities at the KAERI Seoul site, which are to be decommissioned, have been measured, analyzed and evaluated to know the current status of radiation and radioactivity level and to establish and to provide the technical requirements for the safe decommissioning of the facilities which shall be applied in minimizing the radiation exposure for workers and in preventing the release of the radioactive materials to the environment. Radiation dose rate and surface radioactivity contamination level on the experimental equipments, floors, walls of the facilities, and the surface of the activated materials within the reactor pool structure were measured and evaluated. Radioactivity and radionuclides in the pool and cooling water were also analyzed. In case of the activated reactor pool structures which are very difficult to measure the radiation and radioactivity level, a computer code Fispin was additionally used for estimation of the residual radioactivity and radionuclides. The radiation and radioactivity data obtained in this study were effectively used as basic data for decontamination and dismantling plan for safe decommissioning of TRIGA Mark-II, III facilities.

  • PDF

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Fetal dose from Head and Neck Tomotherapy Versus 3D Conformal Radiotherapy

  • Park, So Hyun;Choi, Won Hoon;Choi, Jinhyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.156-160
    • /
    • 2019
  • Background: To compare the dose of radiation received by the fetus in a pregnant patient irradiated for head and neck cancer using helical tomotherapy and three-dimensional conformal radiation therapy (3DCRT). Materials and Methods: The patient was modeled with a humanoid phantom to mimic a gestation of 26 weeks. Radiotherapy with a total dose of 2 Gy was delivered with both tomotherapy (2.5 and 5.0 cm jaw size) and 3DCRT. The position of the fetus was predicted to be 45 cm from the field edge at the time of treatment. The delivered dose was measured according to the distance from the field edge and the fetus. Results and Discussion: The accumulated dose to the fetus was 1.6 cGy by 3DCRT and 2 and 2.3 cGy by the 2.5 and 5 cm jaw tomotherapy plans. For tomotherapy, the fetal dose with the 2.5 cm jaw was lower than that with the 5 cm jaw, although the radiation leakage was greater for 2.5 cm jaw plan due to the 1.5 fold longer beam-on time. At the uterine fundus, tomotherapy with a 5 cm jaw delivered the highest dose of 2.4 cGy. When the fetus moves up to 35 cm at the 29th week of gestation, the resultant fetal doses for 3DCRT and tomotherapy with 2.5 and 5 cm jaws were estimated as 2.1, 2.7, and 3.9 cGy, respectively. Conclusion: For tomotherapy, scattering radiation was more important due to the high monitor unit values. Therefore, selecting a smaller jaw size for tomotherapy may reduce the fetal dose. however, evaluation of risk should be individually performed for each patient.

Thoracic Irradiation Recruit M2 Macrophage into the Lung, Leading to Pneumonitis and Pulmonary Fibrosis

  • Park, Hae-Ran;Jo, Sung-Kee;Jung, Uhee
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.177-188
    • /
    • 2017
  • Background: Radiation-induced pneumonitis and pulmonary fibrosis are common dose-limiting complications in patients receiving radiotherapy for lung, breast, and lymphoid cancers. In this study, we investigated the characteristics of effective immune cells related to pneumonitis and fibrosis after irradiation. Materials and Methods: After anesthesia, the whole thorax of C57BL/6 mice was irradiated at 14 Gy. The lung tissue and bronchoalveolar lavage fluid were collected at defined time points post-irradiation for the determination of histological and immunohistochemical analysis and inflammatory cell population infiltrated into the lung. Results and Discussion: Whole thoracic irradiation increased the deposition of extracellular matrix (ECM), lung weight, and pleural effusions, which started to die from 4 months later. At 4 months after irradiation, the numbers of macrophages and lymphocytes as well as neutrophils were increased dramatically in the lung. Interestingly, the macrophages that were recruited into the lung after irradiation had an enlarged foamy morphology. In addition, the expressions of chemokines (CCL-2, CCL-3, CXCL-10) for the attraction of macrophages and T cells were higher in the lung of irradiated mice. The high expressions of these chemokines were sustained up to 6 months following irradiation. In thoracic irradiated mice, infiltrated macrophages into the lung had the high levels of Mac-3 antigens on their surface and upregulated the hallmarks of alternatively activated macrophages such as arginase-1 and CD206. Furthermore, the levels of IL-4 and IL-13 were higher in a BAL fluid of irradiated mice. Conclusion: All results show that thoracic irradiation induces to infiltrate various inflammation-related immune cells, especially alternatively activated macrophages, through enhancing the expression of chemokines, suggesting that alternatively activated macrophages are most likely important for leading to pulmonary fibrosis.

Lifetime Risk Assessment of Lung Cancer Incidence for Nonsmokers in Japan Considering the Joint Effect of Radiation and Smoking Based on the Life Span Study of Atomic Bomb Survivors

  • Shimada, Kazumasa;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.83-97
    • /
    • 2021
  • Background: The lifetime risk of lung cancer incidence due to radiation for nonsmokers is overestimated because of the use of the average cancer baseline risk among a mixed population, including smokers. In recent years, the generalized multiplicative (GM)-excess relative risk (ERR) model has been developed in the life span study of atomic bomb survivors to consider the joint effect of radiation and smoking. Based on this background, this paper discusses the issues of radiation risk assessment considering smoking in two parts. Materials and Methods: In Part 1, we proposed a simple method of estimating the baseline risk for nonsmokers using current smoking data. We performed sensitivity analysis on baseline risk estimation to discuss the birth cohort effects. In Part 2, we applied the GM-ERR model for Japanese smokers to calculate lifetime attributable risk (LAR). We also performed a sensitivity analysis using other ERR models (e.g., simple additive (SA)-ERR model). Results and Discussion: In Part 1, the lifetime baseline risk from mixed population including smokers to nonsmokers decreased by 54% (44%-60%) for males and 24% (18%-29%) for females. In Part 2, comparison of LAR between SA- and GM-ERR models showed that if the radiation dose was ≤200 mGy or less, the difference between these ERR models was within the standard deviation of LAR due to the uncertainty of smoking information. Conclusion: The use of mixed population for baseline risk assessment overestimates the risk for lung cancer due to low-dose radiation exposure in Japanese males.

Quantifications of Intensity-Modulated Radiation Therapy Plan Complexities in Magnetic Resonance Image Guided Radiotherapy Systems

  • Chun, Minsoo;Kwon, Ohyun;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.48-57
    • /
    • 2021
  • Background: In this study, the complexities of step-and-shoot intensity-modulated radiation therapy (IMRT) plans in magnetic resonance-guided radiation therapy systems were evaluated. Materials and Methods: Overall, 194 verification plans from the abdomen, prostate, and breast sites were collected using a 60Co-based ViewRay radiotherapy system (ViewRay Inc., Cleveland, OH, USA). Various plan complexity metrics (PCMs) were calculated for each verification plan, including the modulation complexity score (MCS), plan-averaged beam area (PA), plan-averaged beam irregularity, plan-averaged edge (PE), plan-averaged beam modulation, number of segments, average area among all segments (AA/Seg), and total beam-on time (TBT). The plan deliverability was quantified in terms of gamma passing rates (GPRs) with a 1 mm/2% criterion, and the Pearson correlation coefficients between GPRs and various PCMs were analyzed. Results and Discussion: For the abdomen, prostate, and breast groups, the average GPRs with the 1 mm/2% criterion were 77.8 ± 6.0%, 79.8 ± 4.9%, and 84.7 ± 7.3%; PCMs were 0.263, 0.271, and 0.386; PAs were 15.001, 18.779, and 35.683; PEs were 1.575, 1.444, and 1.028; AA/Segs were 15.37, 19.89, and 36.64; and TBTs were 18.86, 19.33, and 5.91 minutes, respectively. The various PCMs, i.e., MCS, PA, PE, AA/Seg, and TBT, showed statistically significant Pearson correlation coefficients of 0.416, 0.627, -0.541, 0.635, and -0.397, respectively, with GPRs. Conclusion: The area-related metrics exhibited strong correlations with GPRs. Moreover, the AA/Seg metric can be used to estimate the IMRT plan accuracy without beam delivery in the 60Co-based ViewRay radiotherapy system.

Analysis of Public Notice of NSSC and Field Application Case Regarding Security of Radioisotopes (원자력안전위원회 방사성동위원소 보안관련 고시 및 현장 적용 사례 분)

  • Lee, Hyun-Jin;Lee, Jin-Woo;Jeong, Gyo-Seong;Lee, Sang-bong;Kim, Chong-Yeal
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Since Roentgen discovered X-rays, radiation sources have been utilized for many areas such as agriculture, industry, medicine and fundamental chemical research. As a result, human society has gained lots of benefits. However, if a radioactive material is used for the malicious purpose, it causes serious consequences to humanity and environment. Consequently, international organizations including International Atomic energy Agency (IAEA) have been emphasizing establishment and implementation of security management to prevent sabotage and illicit trafficking of radioactive materials. For this reason, the rule of technical standards of radiation safety management was revised and the public notice of security management regarding radioisotope was legislated in 2015 by Nuclear Safety and Security Commission (NSSC). Several radioactive sources which have to be regulated under the above rule and the public notice have been utilized in Advanced Radiation Technology Institute (ARTI) of Korea Atomic Energy Research Institute (KAERI). In order to control them properly, security management system such as access control and physical protection has been adapted since 2015. In this paper, we have analyzed the public notice of NSSC and its field application case. Based on the results, we are going to draw improvement on the public notice of NSSC and security system.

Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator

  • Jung, Seongmoon;Kim, Bitbyeol;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.171-177
    • /
    • 2020
  • Background: This study aims to determine the effective atomic number (Zeff) from dual-energy image sets obtained using a conventional computed tomography (CT) simulator. The estimated Zeff can be used for deriving the stopping power and material decomposition of CT images, thereby improving dose calculations in radiation therapy. Materials and Methods: An electron-density phantom was scanned using Philips Brilliance CT Big Bore at 80 and 140 kVp. The estimated Zeff values were compared with those obtained using the calibration phantom by applying the Rutherford, Schneider, and Joshi methods. The fitting parameters were optimized using the nonlinear least squares regression algorithm. The fitting curve and mass attenuation data were obtained from the National Institute of Standards and Technology. The fitting parameters obtained from stopping power and material decomposition of CT images, were validated by estimating the residual errors between the reference and calculated Zeff values. Next, the calculation accuracy of Zeff was evaluated by comparing the calculated values with the reference Zeff values of insert plugs. The exposure levels of patients under additional CT scanning at 80, 120, and 140 kVp were evaluated by measuring the weighted CT dose index (CTDIw). Results and Discussion: The residual errors of the fitting parameters were lower than 2%. The best and worst Zeff values were obtained using the Schneider and Joshi methods, respectively. The maximum differences between the reference and calculated values were 11.3% (for lung during inhalation), 4.7% (for adipose tissue), and 9.8% (for lung during inhalation) when applying the Rutherford, Schneider, and Joshi methods, respectively. Under dual-energy scanning (80 and 140 kVp), the patient exposure level was approximately twice that in general single-energy scanning (120 kVp). Conclusion: Zeff was calculated from two image sets scanned by conventional single-energy CT simulator. The results obtained using three different methods were compared. The Zeff calculation based on single-energy exhibited appropriate feasibility.