• Title/Summary/Keyword: Radiation oncology information

Search Result 158, Processing Time 0.026 seconds

Structure of an Oncology Information System Based on a Cost-Effective Relational Database for Small Departments of Radiation Oncology

  • Jeon, Hosang;Kim, Dong Woon;Joo, Ji Hyeon;Ki, Yongkan;Kim, Wontaek;Park, Dahl;Nam, Jiho;Kim, Dong Hyeon
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.172-178
    • /
    • 2020
  • Purpose: Radiation oncology information systems (ROIS) have evolved toward connecting and integrating information between radiation treatment procedures. ROIS can play an important role in utilizing modern radiotherapy techniques that have high complexity and require a large amount of information. Methods: Using AccessTM software, we have developed a relational database that is highly optimized for a radiotherapeutic workflow. Results: The prescription table was chosen as the core table to which the other tables were connected, and three types of forms-charts, worklists, and calendars- were suggested. A fast and reliable channel for delivering orders and remarks according to changes in the situation was also designed. Conclusions: We expect our ROIS design to inspire those who need to develop and manage an individual ROIS suitable for their radiation oncology departments at a low cost.

Database for Patient Information Management in Radiation Oncology Department

  • Lim, Sangwook;Kim, Kyubo;Ahn, Sohyun;Lee, Sang Hoon;Lee, Rena;Cho, Samju
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 2018
  • The purpose of this study is to build a database of patient information for efficient radiotherapy management. Microsoft Office Access was used to build the database owing to its convenience and compatibility. The most important aspect when building the patient database is to make the input and management of patient information efficient at every step of radiotherapy process. The information input starts from the patient's first visit to the radiation therapy department and ends upon completion of the radiotherapy. The forms for each step of radiotherapy process include the patient information form, the radiotherapy schedule form, the radiotherapy information form, the simulation order form, and the patient history form. Every form is centrically connected to the radiation oncology department's patient information form. A test revealed that the database was found to be efficient in managing patient information at each step. An important benefit of this database is improved efficiency in radiotherapy management. Information on patients who received radiotherapy is stored in a database. This means that this clinical data can be found easily and used in future, which will be helpful in research studies on the radiation oncology department. Benefits such as these will potentially contribute to improved radiotherapy quality.

Analysis of radiation safety management status of medical linear accelerator facilities in Korea

  • Kwon, Na Hye;Shin, Dong Oh;Ann, So Hyun;Kim, Jin Sung;Choi, Sang Hyoun;Kim, Dong Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.449-455
    • /
    • 2022
  • The rapid rise in the application of novel treatment techniques, such as intensity-modulated radiotherapy (IMRT), motivated us to survey the status of Korea's radiation safety management and the shielding designs of facilities employing medical linear accelerators (LINACs). To this end, a questionnaire was used to collect information on LINAC facilities and treatments, workload, shielding design, shielding management, and path of obtaining shielding information. Out of 100 domestic institutions, 52 responded to the survey. Approximately 70% of the institutions utilized IMRT for more than 60% of their cases, and an IMRT factor of 5 was adopted by 75% of these institutions. Over 80% of the institutions accounted for the applied time-averaged dose rate per week and instantaneous dose equivalent rates in their shielding designs. Approximately 45% of the institutions obtained important shielding information via a radiation shielding design company and the NCRP-151 report. Overall, most facilities were shown to follow the standards recommended by the relevant international agencies. However, the requirement to establish standardized shielding design information and clarify ambiguous paths for information acquisition was also highlighted. Therefore, the study's results can be used as a foundation for establishing a safety control system and for creating adequate shielding designs.

The Development of On-Line Statistics Program for Radiation Oncology (방사선종양학과 On-line 통계처리프로그램의 개발)

  • Kim Yoon-Jong;Lee Dong-Hoon;Ji Young-Hoon;Lee Dong-Han;Jo Chul-Ku;Kim Mi-Sook;Ru Sung-Rul;Hong Seung-Hong
    • Radiation Oncology Journal
    • /
    • v.19 no.4
    • /
    • pp.369-380
    • /
    • 2001
  • Purpose : By developing on-line statistics program to record the information of radiation oncology to share the information with internet. It is possible to supply basic reference data for administrative plans to improve radiation oncology. Materials and methods : The information of radiation oncology statistics had been collected by paper forms about 52 hospitals in the past. Now, we can input the data by internet web browsers. The statistics program used windows NT 4.0 operation system, Internal Information Server 4.0 (IIS4.0) as a web server and the Microsoft Access MDB. We used Structured Query Language (SQL), Visual Basic, VBScript and JAVAScript to display the statistics according to years and hospitals. Results : This program shows present conditions about man power, research, therapy machines, technics, brachytherapy, clinic statistics, radiation safety management, institution, quality assurance and radioisotopes in radiation oncology department. The database consists of 38 inputs and 6 outputs windows. Statistical output windows can be increased continuously according to user's need. Conclusion : We have developed statistics program to process all of the data in department of radiation oncology for reference information. Users easily could input the data by internet web browsers and share the information.

  • PDF

The Development of Medical Information Management System of Radiation Oncology Department (방사선종양학과 의료정보관리시스템 개발)

  • Lee, Dong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.655-662
    • /
    • 2010
  • By using lotus notes server-client system, the database related to general information of cancer patients, radiation treatment simulation, cancer treatment information and all kinds of information of radiation oncology department need to be developed for effective information management and also user interface was developed for input and output of information. This database also could be used for clinical study, patient care research and medical education. By the development of this electronic chart of the department of radiation oncology, the clinic datum and medical information management could be connected effectively and treatment information according to treatment machine also could be acquired and contributed for improving treatment efficiency, cutting down the waiting time for clinic.

Stereotactic radiotherapy for early stage non-small cell lung cancer

  • Ricardi, Umberto;Badellino, Serena;Filippi, Andrea Riccardo
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.57-65
    • /
    • 2015
  • Stereotactic body radiotherapy (SBRT) represents a consolidated treatment option for patients with medically inoperable early stage non-small cell lung cancer (NSCLC). The clinical evidence accumulated in the past decade supports its use as an alternative to surgery with comparable survival outcomes. Due to its limited toxicity, SBRT is also applicable to elderly patients with very poor baseline pulmonary function or other severe comorbidities. Recent comparative studies in operable patients raised the issue of the possible use of SBRT also for this subgroup, with quite promising results that still should be fully confirmed by prospective trials with long-term follow-up. Aim of this review is to summarize and discuss the major studies conducted over the years on SBRT and to provide data on the efficacy and toxicity of this radiotherapy technique for stage I NSCLC. Technical aspects and quality of life related issues are also discussed, with the goal to provide information on the current role and limitations of SBRT in clinical practice.

Radiation Oncology Digital Image Chart 8nd Digital Radiotherapv Record System at Samsung Medical Center (디지털 화상 병력 시스템과 디지털 방사선치료 기록 시스템의 개발과 사용 경험)

  • Huh Seung Jae;Ahn Yong Chan;Lim Do Hoon;Cho Chung Keun;Kim Dae Yong;Yeo Inhwan;Kim Moon Kyung;Chang Seung Hee;Park Suk Won
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2000
  • Background :The authors have developed a Digital image chart(DIC) and digital Radiotherapy Record System (DRRS). We have evaluated the DIC and DRRS for reliability, usefulness, ease of use, and efficiency. Materials and Methods :The basic design of the DIC and DRRS was to build an digital image database of radiation therapy Patient records for a more efficient and timely flow of critical image information throughout the department. This system is a submit of comprehensive radiation oncology management system (C-ROMS) and composed of a picture archiving and communication system (PACS), a radiotherapy information database, and a radiotherapy imaging database. The DIC and DRRS were programmed using Delphi under a Windows 95 environment and is capable of displaying the digital images of patients identification photos, simulation films, radiotherapy setup, diagnostic radiology images, gross lesion Photos, and radiotherapy Planning isodose charts with beam arrangements. Twenty-three clients in the department are connected by Ethernet (10 Mbps) to the central image server (Sun Ultra-sparc 1 workstation). Results :From the introduction of this system in February 1998 through December 1999, we have accumulated a total of 15,732 individual images for 2,556 patients. We can organize radiation therapy in a 'paperless' environment in 120 patients with breast cancer. Using this system, we have succeeded in the prompt, accurate, and simultaneous access to patient care information from multiple locations throughout the department. This coordination has resulted in improved operational efficiency within the department. Conclusion :The authors believe that the DIC and DRRS has contributed to the improvement of radiation oncology department efficacy as well as to time and resource savings by providing necessary visual information throughout the department conveniently and simultaneously. As a result, we can also achieve the 'paperless' and 'filmless' practice of radiation oncology with this system.

  • PDF

Advances in Radiation Oncology in New Millennium in Korea (21세기 방사선종양학의 전망:최근의 진보와 한국에서의 발전)

  • Huh, Seung-Jae;Park, Chan-Il
    • Radiation Oncology Journal
    • /
    • v.18 no.3
    • /
    • pp.167-176
    • /
    • 2000
  • The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy, IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally patterns-of-care study about major cancers.

  • PDF

Image-guided radiation therapy in lymphoma management

  • Eng, Tony;Ha, Chul S.
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.161-171
    • /
    • 2015
  • Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed.

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.