• Title/Summary/Keyword: Radiation mutant

Search Result 131, Processing Time 0.023 seconds

Genetic Diversity and Relationship in Soybean MDP (Mutant Diversity Pool) Revealed by TRAP and TE-TRAP Markers

  • Kim, Dong-Gun;Bae, Chang-Hyu;Kwon, Soon-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.32-32
    • /
    • 2019
  • Mutation breeding is the useful tool to improve agronomic traits in various crop species. Soybean is most important crop and is rich in protein and oil contents. Despite of the importance as economic value and various genetic resource of soybean, there have been limited studies of genetic relationship among mutant resources through radiation breeding. In this study, the agronomical phenotype for selecting various genetic resources was evaluated in 528 soybean mutant lines. As a result, 210 soybean mutants with their original cultivars were selected with various traits. We named 210 selected lines as Mutant Diversity Pool (MDP). The genetic diversity and the relationship of the MDP were investigated using TRAP and TE-TRAP markers. In TRAP analysis, sixteen primer combination (PC)s were used and a total of 551 fragments were amplified. The highest (84.00%) and the lowest (32.35%) polymorphism levels were showed in PC MIR157B+Ga5 and B14G14B+Ga3, respectively. The mean of PIC values was 0.15 ranging from 0.07 in B14G14B+Sa12 to 0.23 in MIR157B+Sa4. Phylogenetic and population structure analysis indicated that the 210 MDP lines dispersed to four groups among the wild types and their mutants. The highest genetic diversity among populations was observed between lines Paldal and 523-7 (Fst=0.409), whereas the lowest genetic diversity was between population KAS360-22 and 94seori (Fst=0.065). AMOVA showed 11.583 (21.0%) and 43.532 (79.0%) variations in inter and intra mutant population, respectively. Overall, the genetic similarity of each intra mutant populations was closer than that of inter mutant population. A total of 408 fragments were amplified in the 210 MDP using twelve PCs of TE-TRAP markers that were obtained from a combination of three TIR sequence of transposable elements (MITE-stowaway; M-s, MITE-tourist; M-t, PONG). The highest (77.42%) and the lowest (56.00%) polymorphism levels were showed in PONG+Sa4 and PONG+Sa12, respectively. The mean of PIC values was 0.15 ranging from 0.09 in M-s+Sa4 and M-s+Ga5 to 0.21 in M-t+Ga5. AMOVA of M-s showed 2.209 (20%) and 8.957 (80%) variations in inter and intra mutant population, respectively. AMOVA of M-t showed 2.766 (18%) and 12.385 (82%) variations in inter and intra mutant population, respectively. AMOVA of PONG showed 3.151 (29%) and 7.646 (71%) variations in inter and intra mutant population, respectively. According to our study, the PONG had higher inter mutant population and lower intra mutant population. This mean was that for aspect of radiation sensitivity, M-s and M-t showed higher mobility than that of PONG. Our results suggest that the TRAP and the TE-TRAP markers may be useful for assessing the genetic diversity and relationship among soybean MDP and help to improve our knowledge of soybean mutation/radiation breeding.

  • PDF

Mineral Phosphate Solubilization by Wild Type and Radiation Induced Mutants of Pantoea dispersa and Pantoea terrae

  • Murugesan, Senthilkumar;Lee, Young-Keun;Kim, Jung Hun
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Isolates P2 and P3 recorded $381.60{\mu}g\;ml^{-1}$ and $356.27{\mu}g\;ml^{-1}$ of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of $215.85{\mu}g\;ml^{-1}$ and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to $28.94{\mu}g\;ml^{-1}$ and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at $LD_{99}$ dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutant clones by releasing $504.21{\mu}g\;ml^{-1}$ of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >$471.67{\mu}g\;ml^{-1}$ of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization.

Induction and Selection of Citrus Mutant by Gamma-Irradiation (감마선조사를 통한 돌연변이 궁천조생 감귤 가지 유도 및 선발)

  • Kim, In-Jung;Oh, Seung Kyu;Lee, Hyo Yeon
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.215-219
    • /
    • 2010
  • We have subjected to gamma-irradiation to citrus buds and then grafted onto mature citrus tree. Mutant citrus branch lines have been induced. As a result of first selection, we found the several mutant lines showing interesting phenotypes such as higher sugar content. We have selected several branches showing good qualities such as higher sweetness and/or lower acidity. Some branch lines showed over $13^{\circ}Brix$ sugar content and below 0.9% acidity. Other mutant branch lines showed the changes of shape, size, peel thickness, and fiber contents or distribution of fruits. The results suggest that gamma-irradiation is an effective tool for induction of citrus mutant lines.

Different Physiological Response to Salt in Salt Tolerant Rice Mutants Induced by Gamma-Mutagenesis

  • Jang, Duk-Soo;Song, Mira;Kim, Sun-hee;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Kang, Si-Yong;Kim, Wook;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • When plants undergo stress, Reactive oxygen species (ROS) which remove bad elements such as mildew and virus is activated in plant body. However, if ROS is excessively increased, plant will be harmed itself by destruction of cell and signal system and phenomenon of lipid peroxidation. In order to identify content of lipid peroxidation and activity of some enzymes scavenging ROS, phenotypical and physiological analysis was performed with two mutant lines, Till-II-877 and Till-II-894, comparing with cv. Dongan (WT). In phenotype analysis, two mutant lines give to well-conditioned growth better than WT in since 5 days after salt treatment. In enzyme activities, there was a modest difference in the content of catalase (CAT) and peroxidase (POD) between Till-II-877 and Till-II-894, two mutant lines showed high levels in CAT contents than WT. However, they express low levels in POD contents. In MDA analysis, the content of Till-II-877 was higher than that of WT, but Till-II-894 was lower. This result indicates that two mutants have different mechanism against salt stress.

Gamma Radiation Induced Mutagenesis of Lysobacter enzymogenes for Enhanced Chitinolytic Activity

  • Lee, Young-Keun;Kim, Kyoung Youl;Senthilkumar, M.
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • Two chitinase producing strains CHI2 and CHI4 were isolated from soybean rhizosphere soil. Both the strains belonged to Lysobacter enzymogenes as indicated by 16S rDNA sequence analysis. Though strain CHI2 and CHI4 produced extracellular chitinase, they differ in their chitinolytic activity. CHI4 produced approximately three times the higher amounts of enzyme than that of CHI2 under specified conditions. CHI2 produced $535.67U\;l^{-1}$ of chitinase after 48 h incubation with a specific activity of $3.91U\;mg^{-1}$ of protein while strain CHI4 produced $1584.13U\;l^{-1}$ of chitinase with a specific activity of $10.88U\;mg^{-1}$ protein. SDS-PAGE analysis indicated that the molecular weight of chitinase enzyme was approximately 45 kDa. A faint band with a molecular weight of 55 kDa reveals the possibility for the presence of another kind of chitin binding protein. Mutant library was developed by exposing the isolates to gamma rays at their $LD_{99}$ value (0.23 kGy). Totally, 11 mutants of CHI2 and CHI4 are reported to have enhanced chitinase activity. Several leaky mutant clones with decreased enzyme activity and a defective mutant (CHI2-M16) with complete loss of chitinase activity were also identified. CHI4-M18, CHI4-M8 and CHI4-M29 showed 78.8, 41.5, and 31.9% increased chitinase activity over wild type CHI4.

Radio-sensitivity Analysis and Selection of Useful Mutants of Rape (Brassica napus L.) by Gamma Irradiation (방사선 처리에 의한 유채의 생육 및 감수성 조사)

  • Goh, Eun Jeong;Kim, Wook-Jin;Kim, Jin-Baek;Kim, Dong Sub;Kim, Sang Hoon;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.277-283
    • /
    • 2010
  • Rape (Brassica napus L.) plants are one of the major oilseed crops. The main components of rapeseed are oil (35 to 47%) and protein (15 to 32%). For the biodiesel production, the development of a new variety of rape plant with high biomass and/or oleic acid contents is required. In order to determine the optimum dose of gamma-ray irradiation, the rape seeds of cvs. Hanra (Hr), Youngsan (Ys), Tammi (Tm), and Tamra (Tr) were irradiated with a 100~4,000 Gy dose range of gamma-rays. Considering the growth factors, the optimum doses were determined to be within the range of 600~1,000 Gy for the selection of useful mutant lines. Six-hundred and eighty-eight (688) $M_2$ mutant lines were obtained from 600~1,000 Gy gamma-ray-irradiated $M_1$ plants through selfing. The growth characteristics, leaf shape, early flowering, and flower color were all investigated. The selected mutant numbers of early flowering, leaf shape, and flower color were 34, 52, and 3 from the four cultivars, respectively. These mutant lines will be used for the development of a new variety of rape plant with high biomass and oleic acid contents.

Characteristics of Antifungal Bacterium, Bacillus subtilis YS1 and It′s Mutant Induced by Gamma Radiation (온천수로부터 분리한 항진균세균의 특성 및 감마선$(Co^{60})$ 조사를 이용한 돌연변이체 유기)

  • 이영근;김재성;송인근;정혜영;장화형
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.305-311
    • /
    • 2001
  • Antifungal bacterium, Bacillus subtilis YS1 was isolated from Yusong hot spring showed broad antifungal spectrum against 12 kinds of plant pathogenic fungi and Candida albicans, animal pathogen. From the gamma($Co^{60}$) radiation sensitivity test, $D_10$ value was 2.08 kGy and it survived above 20 kGy of radiation dose. Several mutants were induced by gamma radiation. Among them, YS1-1009 mutant showed resistance against tebuconazole of herbicide, increased activity against Botryoshaeria dothidea and ligninase activity. YS67 mutant was antifungal deficient auxotrophic mutants(trp-pro-or arg-ura-). From this results, it suggested that gamma irradiation could be useful method for mutant induction.

  • PDF

Improvement of Cellulolytic Activity of Pleurotus florida through Radiation Mutagenesis

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • A mushroom mutant with increased cellulolytic activity was developed through radiation mutagenesis. The homogenized hypha suspension of Pleurotus florida was exposed to gamma radiation ($^{60}Co$, AECL) at the dose of $LD_{99}$ (0.51 kGy, $D_{10}$; 0.26 kGy). Among 16 mutants, Pf CM4 showed 17.24% more cellulolytic activity than the wild type (p<0.05). It was observed that Pf CM4 can utilize all kinds of carbon sources tested for their mycelia growth. Starch, xylan, and glucose favourably supported the radial mycelia extension. Yeast extract and $NH_4NO_3$ have been recorded as the best organic and inorganic nitrogen sources, respectively. Pf CM4 was found to grow significantly faster, even at high temperature ($30^{\circ}C$), than wild type (p<0.05), and the optimal pH was 5.5~6.5. This study reveals that the mutant Pf CM4 could be employed for the effective recycling of cellulosic wastes, in addition to mushroom farming.

Mutation Breeding of Mushroom by Radiation

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.285-295
    • /
    • 2011
  • Mushrooms belonging to macrofungi have been consumed by humans for their nutritional and medicinal values for centuries throughout the world. Mushroom farming is practiced in more than 100 countries of the world, with production increasing at a rate of 7% per annum. High yield and good quality are always the principal goals for agriculturally important crops, including mushrooms. Several breeding methods are employed for strain improvement such as mass selection based on the natural chance mutation and induced mutation (mutation breeding), protoplast fusion technology, cross breeding and transgenic breeding. However, mutation breeding has shown prominent success in crop plant improvement. Though several-hundred mutant crop varieties have been developed around the world, the mutation breeding of mushrooms is limited. This review paper explores the potential application of radiation on the development of mutant varieties of mushrooms for breeding with desired traits such as better quality and productivity.

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.