• Title/Summary/Keyword: Radiation model

Search Result 2,273, Processing Time 0.034 seconds

A Numerical Analysis on the ascoutic radiation efficiency of a stiffend cylindrical structure in underwater under multi-excitation (다중가진을 받는 수중 원통구조물의 방사효율에 대한 수치해석)

  • Kang, Myunghwan;Yi, Jongju;Han, Seungjin;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.372-376
    • /
    • 2014
  • This study is on acoustic radiation efficiency of a tiffened cylindrical model in water-multi-excitation with phase difference using commercial numerical program ABAQUS and SYSNOISE. When the stiffened cylindrical model is under multi-excitation with phase difference, the surface vibration field is variated with phase difference of excitation. By this different surface vibration field, the acoustic radiation efficiency is also variated with phase difference of excitation.

  • PDF

Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea (국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

Analysis of Drying Characteristics in the Dryer Using the Refraction of Radiation (굴절 현상을 이용한 건조기에서 건조특성 해석)

  • Lee, Kong-Hoon;Choi, Byung-Il;Hong, Yong-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1191-1196
    • /
    • 2006
  • Analysis of drying characteristics has been carried out with one-dimensional model in the dryer using the principle of the refraction of radiation. The dryer is composed of hot water tank, a plastic film conveyer belt, drying material, etc. The model considers the conduction and radiation within the plastic film and drying material. The film is semitransparent to radiation and the drying material is assumed to be semitransparent or opaque to radiation. The results shows that the effect of radiative transfer on the drying rate is relatively large when the thickness of drying material is small and the water temperature is high. When the material is thin, the drying rate by only conduction is also enhanced so that drying time can considerably be reduced.

  • PDF

Prediction of the Exposure to 1763MHz Radiofrequency Radiation Based on Gene Expression Patterns

  • Lee, Min-Su;Huang, Tai-Qin;Seo, Jeong-Sun;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.102-106
    • /
    • 2007
  • Radiofrequency (RF) radiation at the frequency of mobile phones has been not reported to induce cellular responses in in vitro and in vivo models. We exposed HEI-OC1, conditionally-immortalized mouse auditory cells, to RF radiation to characterize cellular responses to 1763 MHz RF radiation. While we could not detect any differences upon RF exposure, whole-genome expression profiling might provide the most sensitive method to find the molecular responses to RF radiation. HEI-OC1 cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 20 W/kg for 24 hr and harvested after 5 hr of recovery (R5), alongside sham-exposed samples (S5). From the whole-genome profiles of mouse neurons, we selected 9 differentially-expressed genes between the S5 and R5 groups using information gain-based recursive feature elimination procedure. Based on support vector machine (SVM), we designed a prediction model using the 9 genes to discriminate the two groups. Our prediction model could predict the target class without any error. From these results, we developed a prediction model using biomarkers to determine the RF radiation exposure in mouse auditory cells with perfect accuracy, which may need validation in in vivo RF-exposure models.

A Study on the Radiation Effect of the Smoke Movement in Room Fires

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.162-175
    • /
    • 2002
  • To investigate smoke movement with radiation in a room fires, a numerical and experi-mental analysis were performed. In this paper, results from a field model based on a self-developed SMEP (Smoke Movement Estimating Program) were compared with Stockier's ex-periment and the experiments on various sized pool fires in a room with door The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k- $\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the S-N discrete ordinates method (DOM). The result of the cal-culated smoke temperature considering radiation effect has shown good agreement compared with the experimental data, although there are large discrepancy in the hot smoke layer be-tween the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This large discrepancy is caused from the radiation effect of $H_2O$ and $CO_2$ gas under smoke productions. Hence the radiation effect under smoke in fire is the point to be specially considered in order to produce more realistic result.

An Effective Algorithm for Transmitted Solar Radiation Calculation through Window Glazing on a Clear Day

  • Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • The main objective of this study is to provide an effective algorithm of the transmitted solar radiation calculation through window glazing on a clear day. This algorithm would be used in developing a computer program for fenestration system analysis and shading device design. Various simulation methods have been evaluated to figure out the most accurate and effective procedure in estimation of transmitted solar radiation on a tilted surface on a clear day. Characteristics of simulated results of each step have been scrutinized by comparing them with measured results of the site as well as results from other simulation programs. Generally, the Duffie & Beckman's solar calculation method introducing the HDKR anisotropic model provided the most reliable simulation results. The DOE-2 program usually provided over-estimated simulation results. The estimation of extraterrestrial solar radiation and beam normal radiation were conducted pretty accurately. However, the solar radiation either on horizontal surface or on tilted surface involves complicated factors in estimation. Even though the estimation results were close to the real measured data during summer when solar intensity is getting higher, the estimation provided more error when solar intensities were getting weaker. The convex polygon clipping algorithm with homogeneous coordinates was fastest model in calculation of sunlight to shaded area ratio. It could not be applied because of its shape limitation.

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

STUDY ON THERMAL MODELING METHODS OF A CYLINDRICAL GROUND OBJECT CONSIDERING THE SPECTRAL SOLAR RADIATION THROUGH THE ATMOSPHERE

  • Choi Jun-Hyuk;Choi Mi-Na;Gil Tae-Jun;Kim Tae-Kuk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.205-208
    • /
    • 2005
  • This research is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground considering the spectral solar radiation through the atmosphere. The thermal modelling is essential for identifying the objects on the scenes obtained from the satellites. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We developed a software that could be used to model the thermal problems of the ground objects irradiated by the spectral solar radiation. This software can be used to handle the conduction within the object as a one-dimensional mode into the depth or as a three-dimensional mode through the media. LOWTRAN7 is used to model the spectral solar radiation including the direct and diffuse solar radiances. In this paper, temperature distributions on the objects obtained by using the one-dimensional and the three-dimensional thermal models are compared with each other to examine the applicability of the relatively easy-to-apply one-dimensional model.

  • PDF

Recent Advances in Radiation-Hardened Sensor Readout Integrated Circuits

  • Um, Minseong;Ro, Duckhoon;Kang, Myounggon;Chang, Ik Joon;Lee, Hyung-Min
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.3
    • /
    • pp.81-87
    • /
    • 2020
  • An instrumentation amplifier (IA) and an analog-to-digital converter (ADC) are essential circuit blocks for accurate and robust sensor readout systems. This paper introduces recent advances in radiation-hardening by design (RHBD) techniques applied for the sensor readout integrated circuits (IC), e.g., the three-op-amp IA and the successive-approximation register (SAR) ADC, operating against total ionizing dose (TID) and singe event effect (SEE) in harsh radiation environments. The radiation-hardened IA utilized TID monitoring and adaptive reference control to compensate for transistor parameter variations due to radiation effects. The radiation-hardened SAR ADC adopts delay-based double-feedback flip-flops to prevent soft errors which flips the data bits. Radiation-hardened IA and ADC were verified through compact model simulation, and fabricated CMOS chips were measured in radiation facilities to confirm their radiation tolerance.