• 제목/요약/키워드: Radiation medium

검색결과 429건 처리시간 0.031초

정사각형 계의 전도-복사열전달에서 정반사면의 영향 (Effects of a Specularly Reflecting Wall in an Infinite Square Duct on Conductive-Radiative Heat Transfer)

  • 변기홍;한동천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1451-1458
    • /
    • 2001
  • The effects of a specularly reflecting surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The walls are opaque, and black or gray. The walls emit diffusely but reflect diffusely or speculary. Heat is transferred by the combined effect of conduction and radiation. The radiative heat transfer is analyzed using direct discrete-ordinates method. The parameters under study are conduction, to radiation parameter, optical depth, wall emissivity, and reflection characteristics. The specular reflection and diffuse reflection show sizeable differences when the conduction to radiation parameter is less than around 0.01. The differences appear only either on the side wall heat flux or on the medium temperature profiles for the range of this study. The differences on the side wall heat flux are observed for optical thickness less than around 0.1 However the differences on the medium temperate profiles are found for optical thickness greater than around 1. The difference increase with increasing reflectance. The specular reflection increases the well heat flux gradient along the side wall.

A frame work for heat generation/absorption and modified homogeneous-heterogeneous reaction in flow based on non-Darcy-Forchheimer medium

  • Hayat, Tasawar;Ahmad, Salman;Khan, Muhammad I.;Khan, Muhammad I.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.389-395
    • /
    • 2018
  • The present work aims to report the consequences of Darcy-Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy-Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number.

Creating a Gain Enhancement Technique for a Conical Horn Antenna by Adding a Wire Medium Structure at the Aperture

  • Duangtang, Pumipong;Mesawad, Piyaporn;Wongsan, Rangsan
    • Journal of electromagnetic engineering and science
    • /
    • 제16권2호
    • /
    • pp.134-142
    • /
    • 2016
  • This paper proposes a technique for improving the conventional conical horn antenna for the X-band frequency using metamaterial on a wire medium structure. The main idea of this research is the application of the wire medium metamaterial to the conical horn's aperture for the enhancement of the horn's gain; this is done without changing the antenna's dimensions. The results show that the wire medium structure can increase the gain of a conventional conical horn antenna from approximately 17.7 dB to 20.9 dB (an increase of approximately 3.2 dB). A prototype antenna was fabricated, and its fundamental parameters including its reflection coefficient ($S_{11}$), radiation patterns, and directive gain were measured. The simulated and measured results were very good. The wire medium structure of the proposed antenna improved the radiation pattern, enhanced the directivity, increased the gain, and reduced the side lobe level using a simple integrated wire medium structure.

The Tumor Control According to Radiation Dose of Gamma Knife Radiosurgery for Small and Medium-Sized Brain Metastases from Non-Small Cell Lung Cancer

  • Park, Sue Jee;Lim, Sa-Hoe;Kim, Young-Jin;Moon, Kyung-Sub;Kim, In-Young;Jung, Shin;Kim, Seul-Kee;Oh, In-Jae;Hong, Jong-Hwan;Jung, Tae-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권6호
    • /
    • pp.983-994
    • /
    • 2021
  • Objective : The effectiveness of gamma knife radiosurgery (GKR) in the treatment of brain metastases is well established. The aim of this study was to evaluate the efficacy and safety of maximizing the radiation dose in GKR and the factors influencing tumor control in cases of small and medium-sized brain metastases from non-small cell lung cancer (NSCLC). Methods : We analyzed 230 metastatic brain tumors less than 5 mL in volume in 146 patients with NSCLC who underwent GKR. The patients had no previous radiation therapy for brain metastases. The pathologies of the tumors were adenocarcinoma (n=207), squamous cell carcinoma (n=18), and others (n=5). The radiation doses were classified as 18, 20, 22, and 24 Gy, and based on the tumor volume, the tumors were categorized as follows : small-sized (less than 1 mL) and medium-sized (1-3 and 3-5 mL). The progression-free survival (PFS) of the individual 230 tumors and 146 brain metastases was evaluated after GKR depending on the pathology, Eastern Cooperative Oncology Group (ECOG) performance score (PS), tumor volume, radiation dose, and anti-cancer regimens. The radiotoxicity after GKR was also evaluated. Results : After GKR, the restricted mean PFS of individual 230 tumors at 24 months was 15.6 months (14.0-17.1). In small-sized tumors, as the dose of radiation increased, the tumor control rates tended to increase (p=0.072). In medium-sized tumors, there was no statistically difference in PFS with an increase of radiation dose (p=0.783). On univariate analyses, a statistically significant increase in PFS was associated with adenocarcinomas (p=0.001), tumors with ECOG PS 0 (p=0.005), small-sized tumors (p=0.003), radiation dose of 24 Gy (p=0.014), synchronous lesions (p=0.002), and targeted therapy (p=0.004). On multivariate analyses, an improved PFS was seen with targeted therapy (hazard ratio, 0.356; 95% confidence interval, 0.150-0.842; p=0.019). After GKR, the restricted mean PFS of brain at 24 months was 9.8 months (8.5-11.1) in 146 patients, and the pattern of recurrence was mostly distant within the brain (66.4%). The small and medium-sized tumors treated with GKR showed radiotoxicitiy in five out of 230 tumors (2.2%), which were controlled with medical treatment. Conclusion : The small-sized tumors were effectively controlled without symptomatic radiation necrosis as the radiation dose was increased up to 24 Gy. The medium-sized tumors showed potential for symptomatic radiation necrosis without signifcant tumor control rate, when greater than 18 Gy. GKR combined targeted therapy improved the tumor control of GKR-treated tumors.

생물정화를 위한 세슘 및 방사선 저항성 세균의 분리 (Isolation of Cesium and Radiation Resistance Bacteria for Bioremediation)

  • 김재훈;류재혁;김상훈;안준우;권순재;김진백;김민규;임상용;박재남
    • 방사선산업학회지
    • /
    • 제17권2호
    • /
    • pp.183-190
    • /
    • 2023
  • The global problem of handling radioactive materials is facing limitations. Eco-friendly bioremediation methods using microorganisms are being studied. This study was conducted to screen cesium-resistant microbial strains. M1 strain was selected from the soil sample by enriched culture in R2A medium containing 100 mM CsCl. In liquid medium containing above 40 mM of CsCl, the growth of M1 was inhibited in a concentration-dependent manner. Otherwise, M1 can survive up to 80mM CsCl in solid medium although the growth rate was slow and colony size was small. M1 strain was genetically identified as a strain of the genus Acinetobacter through 16S rRNA sequencing, and radiation resistance (D10 value) of M1 was found to be 0.307 kGy. These results showed that M1 strain is highly resistant to cesium and can grow in radiation environment. It was considered that M1 strain is useful in the field of biological decontamination of cesium.

흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석 (Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium)

  • 차상명;김종열;박희용
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.952-964
    • /
    • 1992
  • 본 연구에서는 2차원 정사각형 밀폐공간내에 열복사를 흡수, 방사 및 비등방 산란하는 매질이 존재할 때 자연대류와 복사의 상호작용을 선형 비등방 산란을 가정 하고 복사열전달의 계산시 P-N 근사법을 이용하여 해석하였다. 수치계산을 통하여 Planck 수, 산란알베도, 광학두께, 벽방사율 및 비등방 산란이 유동 및 온도 특성 그리고 열전달에 미치는 영향을 조사하였다.

CT 조영제를 이용한 친환경적인 방사선 차폐에 관한 연구 및 고찰 (Research and Consideration of Eco-friendly Radiation Shielding using CT Contrast Agent)

  • 김성길;지연상
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.827-833
    • /
    • 2023
  • 방사선 촬영 조영제는 특수 조영을 필요로 하는 병원에서 인체 장기 및 특정한 부위 검사를 촬영할 때 흔히 쓰이고 있다. 특히 컴퓨터단층촬영(Computed Tomography CT) 조영제는 요오드(Iodine)라는 물질이 혼합되어 있는데 이것이 방사선의 에너지를 흡수하면서 방사선 영상 이미지에서 하얀색으로 보이게 되어 영상의 화질을 더욱 개선시킨다. 또한, 혈관에서 혈액과 같이 움직이는 CT 조영제는 근육 및 물과 확연히 구분을 시켜주고 있어 조영제를 병원에서 많이 사용하고 있다. 이러한 조영제는 엑스레이를 흡수하지만, 엑스레이를 흡수하기 위해서는 밀도가 높거나 방사선 흡수계수가 높아야 한다. 조영제가 혈관에 투입되기 때문에 밀도가 높으면 혈관에 무리가 가서 환자는 쇼크 상태가 오기 때문에 물과 비슷한 밀도를 맞춰야 하고 부작용에 대해 항상 신경을 써야한다. 또한, CT 조영제의 양을 환자의 체형에 따라 조절하면서 쓰고 남은 조영제를 폐기하는데 이것을 방사선 차폐재로 재활용을 할 수 있는 아이디어를 알아보고자 하였다. 조영제와 물을 혼합하는 방법에는 조영제 10%와 물 90%, 조영제 30%와 물 70%, 조영제 50%와 물 50%으로 3가지로 혼합하였다. CT 촬영은 광주광역시 U병원에서 GE사 4채널 CT를 사용하였으며 조영제와 물을 혼합하여 듀란병에 저장하였으며, 물 90%와 조영제 10% 혼합 액체의 밀도가 1.4 g/mL 정도일 때의 물질을 찾아보면 MYLAR라는 물질과 비슷한 것을 확인하였고, 물 70%와 조영제 30% 혼합 액체의 밀도가 1.76 g/mL일 때는 Polyvinylidene과 비슷한 물질인 것을 알 수 있었으며, 물 50%와 조영제 50%일 때 혼합 액체의 밀도는 2.3 g/mL일 때는 콘크리트(concrete) 밀도와 비슷한 밀도를 구성하고 있음을 알 수 있었다. 본 실험의 결과를 통해서 물 50%와 조영제 50%를 혼합한 액체는 콘크리트 차폐와 비슷한 밀도를 가지고 방사선의 차폐가 가능하였다. 따라서 콘크리트 두께와 비교하여 조영제를 50% 이상 첨가한 두께를 이용한 차폐재를 만든다면 충분한 차폐재의 역할을 할 수 있을 것으로 생각된다.

왜성 변이 품종 '꼬마' 무궁화의 캘러스 유도 및 지상부 형성에 식물생장조절물질이 미치는 영향 (The Effect of Plant Growth Regulators on Callus Induction and Shoot Regeneration from the Dwarf Type Variety, Hibiscus syriacus L.var. Ggoma)

  • 이지연;강은정;김상훈;김동섭;김진백;하보근;강시용
    • 방사선산업학회지
    • /
    • 제5권3호
    • /
    • pp.231-236
    • /
    • 2011
  • 'Ggoma' is a new Hibiscus dwarf type variety developed by gamma irradiation at the Korea Atomic Energy Research Institute (KAERI). This study was conducted to determine the best optimum cultural callus formation and shoot regeneration condition. Sterilized leaf tissues were cultured on MS (Marashige and skoog's) medium containing 3% sucrose, 0.8% agar with different concentration and combination of TDZ, 2, 4-D, KT, BA, and 2iP for 4 weeks in vitro culture. MS medium containing 2,4-D $0.1mg\;l^{-1}$ and BA $0.5mg\;l^{-1}$ were most effective on callus formation and growth. After 4 weeks, callus was transferred on BA (0.5, 1, $1.5mg\;l^{-1}$) and TDZ (0.1, 0.2, $0.3mg\;l^{-1}$) for shoot formation. The best condition for inducing the shoot from callus was BA $1.5mg\;l^{-1}$ and TDZ $0.3mg\;l^{-1}$. This result will be useful for the rapid multiplication of Hibiscus syriacus L.var. Ggoma.

The Evaluation of Multiplane-Parallel Chamber Using Crystal Plate as Ionization Medium for Therapeutic Radiation Beams

  • Young W. Vahc;Park, Kyung R.;Kim, Sookil;Chul W. Joh;Kim, Tae H.
    • 한국의학물리학회지:의학물리
    • /
    • 제9권1호
    • /
    • pp.29-35
    • /
    • 1998
  • There has been necessity of an air free ionization chamber using the gold-crystal-aluminium plates, henceforth called the crystal chamber. The crystal chamber formed of parallel plates is very small in size and has more response for absorbed dose of therapeutic radiation beams. The gold plate on the crystal facing the photon and electron beam acts as an intensifier of signals and crystal plate as an ionization medium respectively. Both the copper guard ring and the aluminum collecting electrode are connected to an electrometer. Using high energy photon (6, 15 MV) and electron (9, 12, 15, 18 MeV) beams, the responses of the crystal chamber are evaluated against a PTW Farmer-type chamber at a field size of 10${\times}$10cm$^2$ and 100 cm SSD. The responses of crystal chamber for therapeutic radiation electron and photon beams are greater in magnitude by several order than Farmer. The crystal chamber has good linearity without correction factor C$\_$t,p/ with respect to the signals, a reading reproduction with good accuracy and precision less than 0.5%, and has other useful functions in measuring radiation beams.

  • PDF

발열체가 있는 열린 공간내에서의 자연대류-복사열전달 현상에 관한 수치적 연구 (Numerical Study On Combined Natural Convection-Radiation In Partially Open Square Compartments with A Heater)

  • 손봉세;한규익;서석호;이재효;김태국
    • 한국화재소방학회논문지
    • /
    • 제9권1호
    • /
    • pp.10-19
    • /
    • 1995
  • Study on combined natural convection-radiation In partially open square enclosures filled with absorbing-anisotropic scattering media is performed. A heater block located in the enclosure causes the natural circulation of the fluid in the enclosure which results In significant in-flow of the cold fluid through the partially open wall. Four different locations of the heater are considered to observe the effect of the heater locations on the resulting heat transfer. Results obtained from the combined convection-radiation analyses show much stronger circulation of t he fluid inside the enclosure as compared to those obtained from the pure convection analyses. As the ratio of the open area is Increased, the inflow of the cold fluid and the circulation of the fluid inside the enclosure is increased causing lower fluid temperature Inside the enclosure. It is shown that the location of the heater influences the circulation and heat transfer significantly by showing stronger circulations and more uniform temperature distributions for the cases where the heater is located on the bottom wall as compared to those for the cases where the heater is located on the upper part wall of the enclosure. For pure absorbing medium, the expected circulation in the fluid is relatively week as compared to those with absorbing-scattering medium due to the smaller wall heating as the radiant heat is used to heat the fluid instead. The forward anisotropic scattering phase function is shown to increase the fluid circulation further as compared to the isotropic scattering medium.

  • PDF