• Title/Summary/Keyword: Radiation intensity

Search Result 978, Processing Time 0.023 seconds

Effect Evaluation of Forest Fire on Governor Station (정압기지에 대한 산불화재 영향평가)

  • Jang, Seo-Il;Char, Soon-Chul;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.49-57
    • /
    • 2007
  • This Study is to suggest a method of effect evaluation of forest fire on governor station in shrub land. Theoretically, to evaluate effects of forest fire, it is combined that Spread Rate of Forest Fire, Flame Model, and Thermal Radiation Effects Model; i.e. a travel time of forest fire is calculated by Spread Rate of Forest Fire, fire-line intensity is calculated by Flame Model, and effects of fire-line intensity is affected by Thermal Radiation Effects Model. With the aforementioned method, we could carry out the effect evaluation of forest fire on governor station in shrub land and could distinguish scenarios to need protection plan from all scenarios.

Error and Correction Schemes of Control Volume Radiative Energy with the Discrete Ordinates Interpolation Method (제어체적 복사열정산을 위한 구분종좌표보간법의 오차 및 보정방안)

  • Cha, Ho-Jin;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.796-803
    • /
    • 2003
  • The discrete ordinates interpolation method (DOIM) has shown good accuracy and versatile applicability for the radiation $problems^{(1,2)}$. The DOIM is a nonconservative method in that the intensity and temperature are computed only at grid points without considering control volumes. However, when the DOIM is used together with a finite volume algorithm such as $SIMPLER^{(3)}$, intensities at the control surfaces need to be calculated. For this reason, a 'quadratic' and a 'decoration' schemes are proposed and examined. They are applied to two kinds of radiation problem in one-dimensional geometries. In one problem, the intensity and temperature are calculated while the radiative heat source is given, and in the other, the intensity and the radiative heat source are computed with a given temperature field. The quadratic and the decoration schemes show very successful results. The quadratic scheme gives especially accurate results so that further decoration may not be needed. It is recommended that the quadratic and the decoration schemes may be used together, or, one of them may be applied for control volume radiative energy balance.

An Experimental Study on Combustion Characteristics of Radiant Burner (복사 버너의 연소특성에 관한 실험적 연구)

  • Wie, Jae-Hyug;Lee, Dae-Rae;Kim, Young-Soo;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.19-25
    • /
    • 2006
  • Energy efficient and low pollution combustion systems the use gaseous fuels have been in great demand in recent year. Radiant burner in many different forms are emerging as very desirable combustion systems for same reason. Porous radiant burners are used in drying, preheating and curing, and in other type of materials processing and manufacturing processes. However, little knowledge is available about the operating characteristics and the structure of flames in porous ceramic fiber radiant burners. The objective of the present work is to investigate the global performance characteristics of the ceramic fiber burner. A detailed study which includes the spectral intensity, gas temperature, radiation efficiency and global pollutant emissions. Another objective is to study the flame structure of the ceramic fiber burner by measuring the local gas temperature. The results indicate that ceramic fiber burner do offer a 19-44% gain in radiant efficiency. The ceramic fiber burner exhibit significant spectral intensity peaks in the band at $2.0-2.5{\mu}m$. The local temperature distribution inside the mat and near the mat surface as a function of the equivalence ratio can be reasonably interpreted by the relation of the heat balance in the mat and movement of the reaction zone. Nox emission from ceramic fiber burner is less than 25ppm throughout the operating range.

  • PDF

Morphology Development in a Range of Nanometer to Micrometer in Sulfonated Poly(ethylene terephthalate) Ionomer

  • Lee, Chang-Hyung;Inoue, Takashi;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.580-586
    • /
    • 2002
  • We investigated the effect of ionic component on crystalline morphology development during isothermal annealing in a sodium neutralized sulfonated poly(ethylene terephthalate) ionomer (Ion-PET) by time-resolved small-angle x-ray scattering (TR-SAX S) using synchrotron radiation. At early stage in Ion-PET, SAXS intensity at a low annealing temperature (Ta = 120 $^{\circ}C)$ decreased monotonously with scattering angle for a while. Then SAXS profile showed a peak and the peak position progressively moved to wider angles with isothermal annealing time. Finally, the peak intensity decreased, shifting the peak angle to wider angle. It is revealed that ionic aggregates (multiplets structure) of several nm, calculated by Debye-Bueche plot, are formed at early stage. They seem to accelerate the crystallization rate and make fine crystallites without spherulite formation (supported by optical microscopy observation). From decrease of peak intensity in SAXS,it is suggested that new lamellae are inserted between the preformed lamellae so that the concentration of ionic multiplets in amorphous region decreases to lower the electron density difference between lamellar crystal and amorphous region. In addition, analysis on the annealing at a high temperature (Ta = 210 $^{\circ}C)$ by optical microscopy, light scattering and transmission electron microscopy shows a formation of spherulite, no ionic aggregates, the retarded crystallization rate and a high level of lamellar orientation.

FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES

  • MOCHIZUKI KENJI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • Anomalies in the far-infrared [C II] 158 ${\mu}m$ line emission observed in the central one-kiloparsec regions of spiral galaxies are reviewed. Low far-infrared intensity ratios of the [C II] line to the continuum were observed in the center of the Milky Way, because the heating ratio of the gas to the dust is reduced by the soft interstellar radiation field due to late-type stars in the Galactic bulge. In contrast, such low line-to-continuum ratios were not obtained in the center of the nearby spiral M31, in spite of its bright bulge. A comparison with numerical simulations showed that a typical column density of the neutral interstellar medium between illuminating sources at $hv {\~} 1 eV $ is $N_H {\le}10^{21}\;cm^{-2}$ in the region; the medium is translucent for photons sufficiently energetic to heat the grains but not sufficiently energetic to heat the gas. This interpretation is consistent with the combination of the extremely high [C Il]/CO J = 1-0 line intensity ratios and the low recent star-forming activity in the region; the neutral interstellar medium is not sufficiently opaque to protect the species even against the moderately intense incident UV radiation. The above results were unexpected from classical views of the [C II] emission, which was generally considered to trace intense interstellar UV radiation enhanced by active star formation.

The Characteristic Curves of Commercial Medical X-ray Films (상용 의학용 X-ray 필름의 특성곡선)

  • Heo, Hoon;Jeong, Yeon-Tae;Lee, Jae-Sung
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.2
    • /
    • pp.12-21
    • /
    • 2001
  • For the purpose of determining characteristics of widely used commercial medical x-ray films, which are used for obtaining the Linac-grams for radiational treatment of cancers, we placed several commercial x-ray films at a fixed distance form the linear accelerator. After varying the exposed amount of radiation step by step, we could obtain a continually increasing density image for each film whose densities were determined by microdensitometer readings. The characteristic curves of the films were obtained by plotting the densities vs. the exposed radiation amounts, and their ${\gamma}$ values were determined. These values can be used to suggest a minimum necessary amount of exposed radiation to get a useful Linac-gram. The measured ${\gamma}$ values of the characteristic curves of the Kodak-DVP/RA-1 film were 1.73 when used 6MV x-ray, 1.70 when used 15MV of intensity. For the Konica-AX film, ${\gamma}$ values were 1.29 and 1.18 respectively. The result suggests that the effective conditions for high resolution of a L-gram be 6 MV of x-ray intensity and about 3 rad of exposed dose on a Kodak-DVP/RA-1 film.

  • PDF

Impact of Computed Tomography Slice Thickness on Intensity Modulated Radiation Therapy Plan (전산화단층촬영 슬라이스 두께가 세기변조방사선치료계획에 미치는 영향)

  • Lee, Seoung-Jun;Kim, Jae-Chul
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.285-293
    • /
    • 2006
  • $\underline{Purpose}$: This study was to search the optimal slice thickness of computed tomography (CT) in an intensity modulated radiation therapy plan through changing the slice thickness and comparing the change of the calculated absorbed dose with measured absorbed dose. $\underline{Materials\;and\;Methods}$: An intensity modulated radiation therapy plan for a head and neck cancer patient was done, first of all. Then CT with various ranges of slice thickness ($0.125{\sim}1.0\;cm$) for a head and neck anthropomorphic phantom was done and the images were reconstructed. The plan parameters obtained from the plan of the head and neck cancer patient was applied into the reconstructed images of the phantom and then absorbed doses were calculated. Films were inserted into the phantom, and irradiated with 6 MV X-ray with the same beam data obtained from the head and neck cancer patient. Films were then scanned and isodoses were measured with the use of film measurement software and were compared with the calculated isodeses. $\underline{Results}$: As the slice thickness of CT decreased, the volume of the phantom and the maximum absorbed dose increased. As the slice thickness of CT changed from 0.125 to 1.0 cm, the maximum absorbed dose changed ${\sim}5%$. The difference between the measured and calculated volume of the phantom was small ($3.7{\sim}3.8%$) when the slice thickness of CT was 0.25 cm or less. The difference between the measured and calculated dose was small ($0.35{\sim}1.40%$) when the slice thickness of CT was 0.25 cm or less. $\underline{Conclusion}$: Because the difference between the measured and calculated dose in a head and neck phantom was small and the difference between the measured and calculated volume was small when the slice thickness of CT was 0.25 cm or less, we suggest that the slice thickness of CT should be 0.25 cm or less for an optimal intensity modulated radiation therapy plan.

EMR: An effective method for monitoring and warning of rock burst hazard

  • Song, Dazhao;Wang, Enyuan;Li, Zhonghui;Qiu, Liming;Xu, Zhaoyong
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.53-69
    • /
    • 2017
  • Rock burst may cause serious casualties and property losses, and how to conduct effective monitoring and warning is the key to avoid this disaster. In this paper, we reviewed both the rock burst mechanism and the principle of using electromagnetic radiation (EMR) from coal rock to monitor and forewarn rock burst, and systematically studied EMR monitored data of 4 rock bursts of Qianqiu Coal Mine, Yima Coal Group, Co. Ltd. Results show that (1) Before rock burst occurrence, there is a breeding process for stress accumulation and energy concentration inside the coal rock mass subject to external stresses, which causes it to crack, emitting a large amount of EMR; when the EMR level reaches a certain intensity, which reveals that deformation and fracture inside the coal rock mass have become serious, rock burst may occur anytime and it's necessary to implement an early warning. (2) Monitored EMR indicators such as its intensity and pulses amount are well and positively correlated before rock bursts occurs, generally showing a rising trend for more than 5 continuous days either slowly or dramatically, and the disaster bursts generally occurs at the lower level within 48 h after reaching its peak intensity. (3) The rank of EMR signals sensitive to rock burst in a descending order is maximum EMR intensity > rate of change in EMR intensity > maximum amount of EMR pulses > rate of change in the amount of EMR pulses.

Preliminary results of entire pleural intensity-modulated radiotherapy in a neoadjuvant setting for resectable malignant mesothelioma

  • Hong, Ji Hyun;Lee, Hyo Chun;Choi, Kyu Hye;Moon, Seok Whan;Kim, Kyung Soo;Hong, Suk Hee;Hong, Ju-Young;Kim, Yeon-Sil;Multidisciplinary Team of Lung Cancer in Seoul St. Mary's Hospital
    • Radiation Oncology Journal
    • /
    • v.37 no.2
    • /
    • pp.101-109
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the safety and efficacy of the multimodality treatment with neoadjuvant intensity-modulated radiotherapy (IMRT) for resectable clinical T1-3N0-1M0 malignant pleural mesothelioma (MPM). Materials and Methods: A total of eleven patients who received neoadjuvant chemotherapy and radiotherapy between March 2016 and June 2018 were reviewed. Patients received 25 Gy in 5 fractions to entire ipsilateral hemithorax with helical tomotherapy. Results: All of patients were men with a median age of 56 years. Epithelioid subtype was found in 10 patients. All patients received neoadjuvant chemotherapy with pemetrexed-cisplatin regimen. Ten patients (90.9%) completed 25 Gy/5 fractions and one (9.0%) completed 20 Gy/4 fractions of radiotherapy. IMRT was well tolerated with only one acute grade 3 radiation pneumonitis. Surgery was performed 1 week (median, 8 days; range, 1 to 15 days) after completing IMRT. Extrapleural pneumonectomy was performed in 4 patients (36.3%), extended pleurectomy/decortication in 2 (18.2%) and pleurectomy/decortications in 5 (63.6%). There was no grade 3+ surgical complication except two deaths after EPP in 1 month. Based on operative findings and pathologic staging, adjuvant chemotherapy was delivered in 7 patients (63.6%), and 2 (18.2%) were decided to add adjuvant radiotherapy. After a median follow-up of 14.6 months (range, 2.8 to 30 months), there were 3 local recurrence (33.3%) and 1 distant metastasis (11.1%). Conclusion: Neoadjuvant entire pleural IMRT can be delivered with a favorable radiation complication. An optimal strategy has to be made in resectable MPM patients who would benefit from neoadjuvant radiation and surgery. Further studies are needed to look at long-term outcomes.

Evaluation of using Gantry Tilt Scan to Head & Neck of Patients during Radiation Therapy for Reduction of Metal Artifact (Head & Neck 환자의 방사선 치료시 Metal Artifact의 감소를 위한 Gantry Tilt Scan의 유용성 평가)

  • Lee, Chung-Hwan;Yun, In-Ha;Hong, Dong-Gi;Back, Geum-Mun;Kwon, Gyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.85-95
    • /
    • 2010
  • Purpose: The degradation of an image quality and error of the beam dose calculation can be caused because the metal artifact is generated during the CT simulation of head and neck patient. The usability of the gantry tilt scan for reducing the metal artifact tries to be appraised. Materials and Methods: The inferior $20^{\circ}$ gantry tilt scan was made in order to reduce the metal artifact and $0^{\circ}$ reconstruction image was acquired. The AAPM CT performance Phantom was used in order to compare the CT number of the reconstructed image and Original image. the difference of volume was compared by using the acrylic phantom. The homogeneity of the CT number was evaluated the Intensity volume Histogram (IVH) as in order to evaluate an influence by the metal artifact. A dose was evaluated as the Dose Volume Histogram (DVH). Results: in the comparison of the CT number and volume, the difference showed up less than 0.5%. As to the comparison of IVH, in the gantry tilt scan, influence by an artifact was reduced and the homogeneity of the CT number was improved. The comparison of DVH result reduced the mean dose error of the both sides parotid 0.2~6%. Conclusion: In the Head & Neck radiation therapy, It is difficult and to distinguish tumor and normal tissue and the error of dose is generated by the metal artifact. The delineation of the exact organization was possible if the Gantry tilt scan was used. The CT number homogeneity was improved and the error of dose could be reduced. The Gantry tilt scan confirmed in the Head & Neck radiation therapy to be very useful in the exact radiation therapy.

  • PDF