• Title/Summary/Keyword: Radiation heat loss

Search Result 163, Processing Time 0.025 seconds

Simulation of the Thermal Performance on an Ondol House with Hot Water Heating in Consideration of Radiation Heat Transfer (복사열전달을 고려한 모형 온수온돌 주택 열성능 시뮬레이션)

  • Choi, Y.D.;Yoon, J.H.;Hong, J.K.;Lee, N.H.;Kang, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.295-305
    • /
    • 1993
  • Thermal performance of test cell of model hot water Ondol house was simulated by equivalence heat resistence and heat capacity method. In this method wall was replaced by two equivalence and one heat capacity. This method enables to simulate the variation of temperature of each element of model house. The effect of pipe diameter, pitch of pipe and with or without consideration of inter-radiation between wall surfaces on the energy consumption rate were investgated. Results show that radiations between the ground surface of room and wall surfaces contribute to the heating of room air by reducing the convection heat loss through the wall surfaces.

  • PDF

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

Prediction of temperature using equivalent thermal network in SPMSM (열 등가회로를 이용한 SPMSM 전동기의 온도 예측)

  • Kim, Do-Jin;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.792-793
    • /
    • 2008
  • This paper deals with the temperature calculation using equivalent thermal network for surface mounted permanent magnet synchronous motor(SPMSM) under the steady-state condition. In the equivalent thermal network, heat sources are generated from copper loss and iron loss. Heat transfer consists of conduction, convection and radiation. However, radiation is neglected in this paper because its effect is much smaller than others. Although the heat transfer coefficient in conduction use material property, heat transfer coefficient in convection is difficult to measure due to the atmosphere and ambient condition. Temperatures of each region in SPMSM are measured by thermocouple in operating condition and the thermal resistances of convection are calculated by kirchhoff's current law(KCL) and experimental result. In order to verify the validation and reliability of the proposed equivalent thermal network, temperature which is calculated other load condition is compared with experimental results. Accordingly, temperatures of each region in other SPMSMs will be easily predicted by the proposed equivalent thermal network.

  • PDF

Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 맥동 불안정성의 비선형 거동)

  • Lee, Su Ryong;Park, Sung Cheon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.9-16
    • /
    • 2012
  • Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.

Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석)

  • Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.42-50
    • /
    • 2013
  • Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

Study on Acoustical Radiation from Simplified Systems of a Dash Structure for NVH Performance (자동차 대시 구조의 소음진동 성능개선을 위한 단순 상사구조물의 소음방사성능 연구)

  • Lim, Cha-Sub;Yoo, Ji-Woo;Park, Chul-Min;Jo, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.931-939
    • /
    • 2010
  • A dash panel plays an important role to protect noise as well as heat. Meanwhile, it is also the most important path that transfers energy to the interior cavity, so that some of noises are transferred via air and its structural vibration becomes a major issue. From the viewpoint of NVH performance, simplified structures analogues to the dash wall are dealt with. Stiffeners, damping sheets and sound packages attached to a flat panel are taken into account as design variables. Structural radiation characteristics(thus, structure borne) such as radiation efficiency and radiation power are mainly discussed. For the case when an excitation is applied on a frame that surrounds the panel, it is shown that the radiation efficiency increases by attaching a stiffener to the panel, which is similarly found from the case when a panel is directly excited. It seems more effective to attach damping sheets along the boundary area of the panel rather than its middle area. The radiation efficiency of sound packages may make a dominant contribution to transmission loss as well as sound radiation. Experimental work was carried out to verify the results based on the simulation study.

Estimate of Heat Flux in the East China Sea (동지나해의 열속추정에 관한 연구)

  • KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.84-91
    • /
    • 1996
  • Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.

  • PDF

A study of Energy use Impacts by SHGCs of Windows in Detached House (주택 창의 SHGC가 에너지소비에 미치는 영향에 관한 연구)

  • Park, Yool;Park, Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.189-196
    • /
    • 2010
  • U-factor and solar heat gain coefficient(SHGC) usually can be used as the index to evaluate the thermal performance. U-factor is a concept for heat loss by the temperature difference between inside and outside, so it's useful to be applied in heating season. But SHGC that indicates the fraction of heat from incident solar radiation that flows through a window by means of optical transmission, as well as absorption, re-radiation and convection is for cooling season. In other words, U-factor and SHGC of windows by cities have to be reflected to select the window of the energy conservation. The purpose of this research is to analyze the energy use impacts by SHGCs of windows for detached house in Inchon and Ulsan through energy simulation by eQUEST.

Prediction of Heat-Up Time of the Glass Plate by IR Heaters in an LCD-Panel Cleaning Process (LCD 패널 세척공정에서 원적외선 히터에 의한 유리기판 승온시간 예측)

  • Kim, Yun-Ho;Ji, Tae-Ho;Kim, Seo-Young;Rhee, Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.526-533
    • /
    • 2006
  • The prediction of heat-up time of an LCD glass plate in LCD glass pre-treatment process has been implemented in the present study. Firstly, the analytical solution for one-dimensional radiation heat transfer from IR heaters to a LCD glass plate is obtained. When the surface temperature of the IR heaters is set at 473 K, the heat-up time of LCD glass to averaged temperature of 383K is 28 seconds. In addition, a three dimensional full CFD analysis using STAR-CD is implemented in an effort to consider the effect of 3-D heat loss through the furnace walls. From the results of the 3-D CFB analysis, the heat-up time increases up to 32.5 seconds under the same conditions. When the IR heater temperature in creases up to 573 K, the heat-up time decreases to 12 seconds for the one-dimensional analytical solution and to 13.5 seconds for the 3-D CFD analysis, respectively.