• Title/Summary/Keyword: Radiation heat

Search Result 1,420, Processing Time 0.03 seconds

The Analysis of Electrical Conduction and Corrosion Phenomena in HVDC Cooling System and the Optimized Design of the Heat Sink of the Semiconductor Devices (HVDC 냉각시스템의 전기전도현상 및 부식현상 기술 분석과 스위칭 소자의 방열판 최적 설계 검토)

  • Kim, Chan-Ki;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.484-495
    • /
    • 2017
  • In HVDC thyristor valves, more than 95% of heat loss occurs in snubber resistors and valve reactors. In order to dissipate the heat from the valves and to suppress the electrolytic current, water with a high heat capacity and a low conductivity of less than 0.2 uS/cm must be used as a refrigerant of the heat sink. The cooling parts must also be arranged to reduce the electrolytic current, whereas the pipe that supplies water to the thyristor heat sink must have the same electric potential as the valve. Corrosion is mainly caused by electrochemical reactions and the influence of water quality and leakage current. This paper identifies the refrigerants involved in the ionization, electrical conductivity, and corrosion in HVDC thyristor valves. A method for preventing corrosion is then introduced. The design of the heat sink with an excellent heat radiation is also analyzed in detail.

Analysis of Heat Transfer Characteristics Based on Design Factors for Determining the Internal Geometry of Metal Insulation in Nuclear Power Plant (원전용 금속단열재의 내부 형상결정을 위한 설계인자 별 열전달 특성 분석)

  • Song, Ki O;Yu, Jeong Ho;Lee, Tae Ho;Jeon, Hyun Ik;Ha, Seung Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1175-1181
    • /
    • 2015
  • A heat insulating material used in the industrial site normally derives its heat insulating performance by using a low thermal conductivity material such as glass fiber. In case of the metal insulation for nuclear power plant, in contrast, only TP 304 stainless steel foil having high thermal conductivity is the only acceptable material. So, it is required to approach in structural aspect to ensure the insulation performance. In this study, the design factors related to the metal insulation internal structure were determined considering the three modes of heat transfer, i.e., conduction, convection, and radiation. The analysis of heat flow was used to understand the ratio of the heat transfer from each factor to the overall heat transfer from all the factors. Based on this study, in order to minimize the convection phenomenon caused by the internal insulation, a multiple foil was inserted in the insulation. The increase in the conduction heat transfer rate was compared, and the insulation performance under the three modes of heat transfer was analyzed in order to determine the internal geometry.

Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm (반발 입자 군집 최적화 알고리즘을 이용한 표면복사 물성치의 역추정에 관한 연구)

  • Lee, Kyun Ho;Kim, Ki Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.747-755
    • /
    • 2014
  • The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.

Development of Spatial Data Management System to Estimate Regional Evapotranspiration Using a Land Surface Parameterization

  • Kim, Kwang-Soo;Chung, U-Ran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2003.09a
    • /
    • pp.58-61
    • /
    • 2003
  • A land surface parameterization has been used to simulate influences of the terrestrial surface on the atmosphere. A simple biosphere model (SiB2), one of land surface parameterization, calculates exchange of radiation, sensible heat, latent heat, and momentum between the surface and the atmosphere (Sellers, et al., 1996).(omitted)

  • PDF

Trouble prediction of Thyristor Rectifiers by the method of heat distribution survey (열분포측정에 의한 정류회로 고장예측)

  • Park, Ho-Cheul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.818-820
    • /
    • 1993
  • In the three phase full-wave thyristor rectifier, heat radiation concentrated at a few thyristor(s), while equipment's output is normal. That is very important on the predictive maintenance or checking including replacement of parts(or modules). Therefore, this report explains the method of effective diagnosis and the reason that firing control modules have to be adjusted accuratly on each phase.

  • PDF

A Study on the Burning Rate of Puzzle Mats (퍼즐매트의 연소속도에 관한 연구)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.84-90
    • /
    • 2008
  • The mass loss rate and heat release rate of puzzle mats were analysed using variable external irradiation level. Five samples of puzzle mat were tested in this study : Type A, B, C, D and E. Type A, B and C are all general grades whereas Type D and E are both Flame retardant grades. Incident heat fluxs of $25kW/m^2$, $35kW/m^2$, $50kW/m^2$ and $70kW/m^2$ were selected for these experiments. All samples were tested in the horizontal orientation and were wrapped in a single layer of aluminum foil. Each sample was nominally 20mm thick and 100mm square. The combustion heat and mass loss rate were carried out from Oxygen bomb calorimeter and mass loss calorimeter according to ISO 5660-1 respectively. Heat release rates were calculated using the equation ${\dot{Q}}=A_f{\dot{m}}"_X{\Delta}H_c=0.75A_f{\dot{m}}"{\Delta}H_c$. where $A_f$ is the horizontal burning area of the sample, $\dot{m}"$ is mass loss rate per unit area, ${\Delta}H_c$ is complete heat of combustion and 0.75 is combustion efficiency.

Heat Analysis for Heat Sink Design Using Finite Element Method (유한요소법을 이용한 방열판 설계를 위한 열해석)

  • Jang, Hyun-Suk;Lee, Joon-Seong;Park, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1027-1032
    • /
    • 2013
  • LED is standing in the limelight as a light part of the low-carbon green energy. While LEDs are eco-friendly, efficient and durable, extreme heat rises can cause their durability to decrease, with 80% of the power supply being turned into heat energy. Heat radiation systems are important because rising temperatures affect the lifetime of LED elements. Therefore, in this paper, thermal analysis was performed for the shape of heat sink to the LED bulb. Also, it is applied the temperature control systems to our products for optimal performance.

Catalytic combustion type hydrogen gas sensor using TiO2 and UV LED (TiO2 광촉매와 UV LED를 이용한 접촉연소식 수소센서)

  • Hong, Dae-Ung;Han, Chi-Hwan;Han, Sang-Do;Gwak, Ji-Hye;Lee, Sang-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • A thick film catalytic gas sensors which can be operated at $142^{\circ}C$ in presence of ultra violet-light emitting diode has been developed to measure hydrogen concentration in 0-5 % range. The sensing material as a combustion catalyst consists of $TiO_{2}$ (5 wt%) and Pd/Pt (20 wt%) supported on $Al_{2}O_{3}$ powder and the reference material to compensate the heat capacity of it in a bridge circuit was an catalyst free $Al_{2}O_{3}$ powder. Platinum heater and sensor materials were formed on the alumina plate by screen printing method and heat treatment. The effect of UV radiation in the presence of photo catalyst $TiO_{2}$ on the sensor sensitivity, response and recovery time has been investigated. The reduction of operating temperature from $192^{\circ}C$ to $142^{\circ}C$ for hydrogen gas sensing property in presence of UV radiation is attributed to the hydroxy radical and superoxide which was formed at the surface of $TiO_{2}$ under UV radiation.

Temperature distribution in VX-2 hepatoma heated with thermoseed hyperthermia (열소자 온열요법시 VX-2 hepatoma내의 온도 변화에 대한 연구)

  • Choi, Ihl-Bohng;Bahk, Yong-Whee
    • Radiation Oncology Journal
    • /
    • v.12 no.3
    • /
    • pp.295-300
    • /
    • 1994
  • It was the purpose of present study to develop a new thermoseed for heating deep-seated tumors and assessment of the effect of magnetic control on thermoseeds. Aqueous suspension of iron micro spheres (Ferropolysaccharide) was injected directly into the VX-2 hepatoma and heated with 1.2 MHz inductive radiofrequency unit. Aqueous thermoseed suspension was delivered to the tumor by simple percutaneous injection. The limitation of the thermoseed heating method is the positional change of thermoseed particles in the tumor after implantation. The thermoseed particles could enter the systemic blood circulation and cause a severe embolization of a critical organ. To minimize this limitation, we have used the magnetic control after loading the thermoseed in the tumor, W hen ferropolysaccharides were exposed to a strong magnetic field, they magnetized and subsequently exerted a magnetic force on each other, forming larger aggregates of particles. The size of aggregated Particles were too big to enter the systemic blood circulation. Thus, unlike other thermoseed method, we hold the thermoseed particles stationary in the tumor. The temperature of the injected site and immediate vicinity elevated by $4-5^{\circ}C$. The temperature of the surrounding normal hepatic tissue elevated by $1-2^{circ}C$ only. The heating effect within the tumor was variable depending on the density of ferromagnetic aqueous suspension. Our results suggest that inductive heating of tumor injected with ferropolysaccharide solution offers the possibility of effective heat delivery to the defined tumor volume, which is difficult to heat with other heating devices.

  • PDF

The Prediction of Temperature in Composite Box Girder Bridges (합성 박스형 교량의 온도 예측)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.431-440
    • /
    • 1997
  • The paper describes a theoretical model for the prediction of bridge temperatures from meteorological data measured at bridge site and local meteorological center together with existing finite element heat transfer theory and solar radiation transfer theory to determine the time dependent temperature distribution of bridge. In this analytical model, the most adequate equation for the calculation of solar radiation on the bridge surface, which is dominant in day time is described based on the results of several experimental studies for the solar energy. The validity of this model is tested against field data obtained from long term experimental program on Sadang Viaduct in Seoul. Also, this paper describes the linear correlation between design variables and meteorological data to establish analytical criteria for the prediction of the average temperature, which are responsible for the longitudinal deformation of the bridges and of the vertical differential temperature profiles. which are responsible for the bending deformations from the long term experimental results.

  • PDF