• Title/Summary/Keyword: Radiation heat

Search Result 1,420, Processing Time 0.031 seconds

On response of Surface Equilibrium Temperature for Change of Surface Characteristics : An EBM Study (지표 특성 변화에 대한 평형온도의 반응 연구 : EBM 연구)

  • Seo, Ye-Won;Chu, Jung-Eun;Ha, Kyung-Ja
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Energy Balance Model (EBM) was used to experiment the distribution of surface equilibrium temperature which responds to external forcing associated with the surface characteristics. Surface equilibrium temperature is calculated as sum of incoming solar radiation and latitudinal transport is balanced with outgoing infrared radiation. To treat incoming solar radiation, the source of the earth energy, significantly for energy balance, the experiment for surface equilibrium temperature distribution was performed considering the energy balance with the latitudinal albedo change as well as land and sea distribution. In addition, linear albedo change experiment, arctic albedo 5%, 10%, 15% change experiments and the opposite albedo change experiments between arctic and mid-latitudes were performed using incoming solar radiation as an external forcing. Moreover, with and without ice-albedo feedback experiments were performed. Increasing of arctic albedo is blocked out the incoming solar radiation so that it induces decreasing of latitudinal heat transport. It is strengthened energy transport from low latitudes by keeping arctic low energy states. Therefore the temperature change in the mid-latitudes exhibits larger response than that of arctic due to the difference of transport. The land which has lower heat capacity than sea can be reach to equilibrium temperature shortly. Also land is more sensitive to temperature change with respects to albedo. Thus it induces the thermal difference between land and sea. As a result, the equilibrium temperature exhibits differently as the difference of albedo and heat capacity which are the one of surface characteristics. Surface equilibrium temperature decreases as albedo increase and the ratio of temperature change is large as heat capacity is small. The decreasing of surface equilibrium temperature with respects to increasing of linear albedo is accelerated by ice-albedo feedback. However local change of surface equilibrium temperature decreases non-linearly.

  • PDF

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim;Byeong Ryong Park;Minsu Cho;Won Il Jang;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.270-277
    • /
    • 2023
  • Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

New mathematical approach to determine solar radiation for the southwestern coastline of Pakistan

  • Atteeq Razzak;Zaheer Uddin;M. Jawed Iqbal
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Solar Energy is the energy of solar radiation carried by them in the form of heat and light. It can be converted into electricity. Solar potential depends on the site's atmosphere; the solar energy distribution depends on many factors, e.g., turbidity, cloud types, pollution levels, solar altitude, etc. We estimated solar radiation with the help of the Ashrae clear-sky model for three locations in Pakistan, namely Pasni, Gwadar, and Jiwani. As these locations are close to each other as compared to the distance between the sun and earth, therefore a slight change of latitude and longitude does not make any difference in the calculation of direct beam solar radiation (BSR), diffuse solar radiation (DSR), and global solar radiation (GSR). A modified formula for declination angle is also developed and presented. We also created two different models for Ashrae constants. The values of these constants are compared with the standard Ashrae Model. A good agreement is observed when we used these constants to calculate BSR, DSR, GSR, the Root mean square error (RMSE), Mean Absolute error (MABE), Mean Absolute percent error (MAPE), and chisquare (χ2) values are in acceptance range, indicating the validity of the models.

Study on the Performance Characteristics of the Solar Hybrid System with Heat Pump Operating Temperature during Winter Season (겨울철 열펌프 작동온도에 따른 태양열 하이브리드 시스템의 성능특성에 관한 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.821-827
    • /
    • 2010
  • Study on the performance characteristics of the solar hybrid system with heat pump operating temperature during winter season has performed by using an experimental test. The system performance and operating characteristics with the heat pump operating temperature, hour and load condition were investigated and analyzed. As a result, the hot water temperature was significantly affected by the heat pump operating temperature at the morning(time 1) and noon(time 2). However, hot water temperature was set by the radiation quality and collecting operation hour at the afternoon(time 3). In addition to the solar fraction was decreased for the high heat pump operating temperature because the heat pump operated with a long operating time and short operating period.

Numerical simulations of radiative and convective heat transfer in the cylinder of a diesel engine (디이젤엔진내의 복사열전달 효과에 관한 수치해석적 연구)

  • 임승욱;김동우;이준식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.54-64
    • /
    • 1992
  • During combustion process in a diesel engine radiation heat transfer is the same order of magnitude as the convection heat transfer. An approximation of heat and momentum source distributions is applied at a level consistent with those used in modelling the soot distribution and the turbulence instead of modelling the fuel spray and the chemical kinetics. This paper illustrates a use of the third order spherical harmonics approximation to the radiative transfer equation and delta-Eddington approximation to the scattering phase function for droplets in the flow. Results are obtained numerically by a time marching finite difference scheme. This study aims to compare heat transfer with convection heat transfer and to investigate the importance of scattering by fuel droplets and of accounting for spatial variations in the extinction coefficient on the radiative heat flux distributions at the walls of a disc shaped diesel engine.

  • PDF

Design of the Heat Dissipation Rate of Automotive Radiation (I) Analysis of Heat Dissipation (자동차용 라디에이터의 방열성능설계에 관한 연구 (I)방열성능의 해석)

  • 정종수;이춘식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-75
    • /
    • 1989
  • A method for analyzing the heat dissipation rates of automotive radiators has been proposed and also a new model equation of heat transfer rate of louvered fins has been proposed and tested. With the method, the effect of various design parameters on the performance of a radiator has also been studied. The proposed model equation for air-side heat transfer has made fair predictions which agree well with the experiments. Also the design value of heat dissipation rate with various fin pitches and radiator size has a good agreement with the heat dissipation of the commercial automotive radiators. Thus, the method of analyzing the radiator performance proposed in this study might be used to design new automotive radiators.

  • PDF

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Lee, Kee-Man;Kim, Jeong-Soo;Kim, Sung-Cho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

Thermal Design and Heat Load Measurement of PSICS (적외선 우주망원경 냉각시스템 열설계 및 열침입량 측정)

  • Yang H. S.;Kim D. L.;Lee B. S.;Choi Y. S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.43-46
    • /
    • 2005
  • A Protomodel Space Infrared Cryogenic System (PSICS) cooled by a stirling cryocooler was designed. The PSICS has an IR sensor inside a cold box which is cooled by a stilting cryocooler with refrigeration capacity of 500mw at 80K in a vacuum vessel. It is important to minimize heat load for reducing background thermal noise. In order to design the cryogenic system of low heat load and to reduce heat load, we did several numerical analyses and tested using boil-off calorimetry with liquid nitrogen to measure the heat leak of the system. In this paper, we present the results obtained by thermal analysis and heat load measurement for designing the PSICS.

Computational Simulation of Heat flow phenomena in Newly Designed Heat Sinks (뉴 디자인된 히트싱크의 열 유동 현상 컴퓨터 시뮬레이션)

  • Lim Song Chul;Choi Jong Un;Kang Kae Myung
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.775-779
    • /
    • 2004
  • For improvement of heat dissipation performance, heat analysis is conducted on the newly designed heat sinks under two convection conditions by using computational fluid dynamics(CFD). Three types of heat sink, plate, wave and top vented wave, are used, and convection conditions are the variations of gravity direction at natural convection and of fan location at forced convection. The results of analysis showed that the heat resistances of top vented wave heat sink were $0.17^{\circ}C$/W(forced convection) and $0.48^{\circ}C$/W(natural convection). In the case of natural convection, gravity direction affected heat flow change, and protection against heat performance was superior in case of z-axis gravity direction. Under the forced convection, all the heat sinks revealed superior thermal characteristics in the fan position of z-axis rather than y-axis. In this study, it was observed that the top vented wave type heat sink showed the best ability of heat radiation comparing with the others.

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF