• Title/Summary/Keyword: Radiation heat

Search Result 1,420, Processing Time 0.04 seconds

USING MODIS DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHIAYI PLAIN

  • Ho, Han-Chieh;Liou, Yuei-An;Wang, Chuan-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.317-319
    • /
    • 2008
  • Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportransporation over a regional area. With the advent of improved remote sensing technology, it becomes feasible to assess the ET over a regional scale. Firstly, the IMAGINE ATCOR atmospheric module is used to preprocess for the MODIS imagery. Then MODIS satellite images which have been corrected by radiation and geometry in conjunction with the in-situ surface meteorological measurement are used to estimate the surface heat fluxes such as soil heat flux, sensible heat flux, and latent heat flux. In addition, the correlation coefficient between the derived latent heat and the in-situ measurement is found to be over 0.76. In the future, we will continue to monitor the surface heat fluxes of paddy rice field in Chiayi area.

  • PDF

USING REMOTELY SENSED DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHAIYI PLAIN

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.422-425
    • /
    • 2007
  • Traditionally, surface energy fluxes are obtained by model simulations or empirical equations with auxiliary meteorological data. These methods may not effectively represent the surface heat fluxes in a regional scale due to scene variability. On the other hand, remote sensing has the advantage to acquire data of a large area in an instantaneous view. The remotely sensed data can be further used to retrieve surface radiation and heat fluxes over a large area. In this study, the airborne and satellite images in conjunction with meteorological data and ground observations were used to estimate the surface heat fluxes over Taiwan's Chaiyi Plain. The results indicate that surface heat fluxes can be properly determined from both airborne and satellite images. The correlation coefficient of surface heat fluxes with in situ corresponding observations is over 0.60. We also observe that the remotely sensed data can efficiently provide a long term monitoring of surface heat fluxes over Taiwan's Chaiyi Plain.

  • PDF

Analysis on the three-dimensional unstationary heat conduciton on the welding of thick plate by F. E. M. (有限要素法에 依한 厚板熔接時의 3次元 非定常熱傳導解析)

  • 방한서;김유철
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.37-43
    • /
    • 1991
  • In order to analyze the mechanical phenomena of three dimensional elato-plastic behavior caused by welding of thick plate, it is necessary to solve exactly the three dimensional unstationary heat conduction problem considering the moving effect of heat source and the temperature-dependence of material properties. In this paper, the three-dimensional unstationary heat conduction problem is formulated by using an isoparametric finite element method. Thereafter, the transient temperature distributions, according to time, of thick plate during welding are defined from the results calculated by the developed computer program.

  • PDF

Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

  • Lee, Jae Taek;Lee, Seung Sik;Mondal, Suvendu;Tripathi, Bhumi Nath;Kim, Siu;Lee, Keun Woo;Hong, Sung Hyun;Bai, Hyoung-Woo;Cho, Jae-Young;Chung, Byung Yeoup
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.594-602
    • /
    • 2016
  • Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of $Ser^{78}$ to $Cys^{78}$ resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of $Cys^{78}$ in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced1 survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone.

Study on assessment of outdoor thermal environment with coupled simulation of convection and radiation (대류.복사 연성시뮬레이션을 통한 옥외 온열환경 평가 기법)

  • Ryu, Min-Kyung;Lim, Jong-Yeon;Hwang, Hyo-Keun;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.565-572
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas such as heat island has become worse due to urbanization and overpopulation, etc. In this study, a new method which is coupled simulation of convection and radiation to evaluate outdoor thermal environment in urban area will be proposed. Because the solar radiation affects on outdoor thermal environment massively, therefore the radiation calculation is very important in outdoor thermal environment prediction. The coupled simulation proposed in this study can assess the outdoor thermal environment with accurate.

  • PDF

A Comparative Study of Radiation and Gas Sterilization. (방사선항균법과 개스항균법의 비교연구)

  • 정해원;유영수
    • Journal of Environmental Health Sciences
    • /
    • v.8 no.1
    • /
    • pp.81-97
    • /
    • 1982
  • Ethylene oxide gas has been used as a cold sterilant for heat-sensitive medical equipments and as a fumigant for food for more than 30 years, and it is used more widely than radiation although radiation sterilization has made significant inroads in recent years. But according to recent studies of toxicities such as mutagenicity, haemolytic effect and possible carcinogenicity of Ethylene oxide (ETO) and its two main reaction products, Ethylene chlorohydrin (ETCH) and Ethylene glycol (ETG), Environmental Protection Agency in U.S.A. has suggested some regulations on residual gas in drug products and medical devices for human use. The mutagenic activity of ETO compared with that of X-ray has an equivalency of 1 ppm/hr for ETO as compared to 20 mrad for X-ray, and one could suggest the present maximum allowable concentration for ETO (50 ppm) should be 400 times lower than the radiation standard (2.5 mrad/hr). Although radiation sterilization has advantages of simplicity of operation and complete reliability, changes of physico-chemical properties with possible formation of toxic substances may occur. It is therefore necessary to make some regulations of our own for residual toxicities orginated from each sterilization method.

  • PDF

Parental inheritance of heat stress tolerance during grain filling period in wheat

  • Ko, Chan Seop;Ou, Meong Kyu;Hyun, Jong Nae;Kim, Kyung Hun;Kim, Jin Baek;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.142-142
    • /
    • 2017
  • Wheat (Triticum asetivum L.) is one of the major grain crops worldwide. The reduced productivity ascribed by adverse environment is increasing the risk of food security. Wheat cultivars have been actively released by public side since 1960s in Korea. Each variety has been developed for superior regional adaptation, pest resistance and mostly high yield. Heat stress tolerance is one of the major parameters that threaten wheat production in Korea. Heat stress during grain filling period has been conceived as critical level and directly influences on wheat production. We evaluated 11 common wheat cultivars ("Baegjoong", "Dajung", "Goso", "Hanbaek", "Jokyoung", "Joeun", "Jopum", "Keumgang", "Olgeuru", "Sinmichal", "Uri") that were exposed to abnormally high temperature during the grain filling period. Each plant was grown well in a pot containing "Sunshine #4" soil in controlled phytotron facility set on $20^{\circ}C$ and 16 h photoperiod. At 9 day-after-anthesis (DAA9), plants were subjected to a gradual increase in temperature from $20^{\circ}C$ to $33^{\circ}C$ and maintained constantly at $33^{\circ}C$ for 5 days. After the treatment, plants were subjected to gradual decrease to normal temperature ($20^{\circ}C$) and continue to grow till harvest. Seeds were harvested from each tiller/plant. Total chlorophyll contents decrease level as well as grain parameters were measured to evaluate varietal tolerance to heat stress. We also divide each spike into five regions and evaluate grain characteristics among the regions in each spike. The obtained results allow us to classify cultivars for heat stress tolerance. The pedigree information showed that typical wheat lines provide either tolerance or susceptible trait to their off-springs, which enable breeders to develop heat stress tolerance wheat by appropriate parental choice.

  • PDF

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.