• Title/Summary/Keyword: Radiation heat

Search Result 1,420, Processing Time 0.029 seconds

Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation (열복사에 의한 수직연료면의 점화현상 해석)

  • 한조영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.

Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer (하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

Spatial Variability of Soil Heat Fluxes in a Conifer Forest (침엽수림에서 토양열 플럭스의 공간 변화)

  • Yun-Ho Park;Byong-Lyol Lee;Kyung-Sook Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • The spatial variability of soil heat fluxes in a conifer forest was investigated by meteorological measurement. The maximum daily averages of R $s_{dn}$ and Rn were about 260 W $m^{-2}$ and 180 W $m^{-2}$ . The daily average of G was typically 10% of net radiation during mid-July to mid-August. The measured soil heat flux of $G_{6}$ was suitable to calculate G within 2% error during the study period. A time delay in the maximum nux at a depth of 0.1 m by heat storage was observed. About 10 to 15 W $m^{-2}$ of error can occur, if it is neglected.

NUMERICAL INVESTIGATION OF THE SPREADING AND HEAT TRANSFER CHARACTERISTICS OF EX-VESSEL CORE MELT

  • Ye, In-Soo;Kim, Jeongeun Alice;Ryu, Changkook;Ha, Kwang Soon;Kim, Hwan Yeol;Song, Jinho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The flow and heat transfer characteristics of the ex-vessel core melt (corium) were investigated using a commercial CFD code along with the experimental data on the spreading of corium available in the literature (VULCANO VE-U7 test). In the numerical simulation of the unsteady two-phase flow, the volume-of-fluid model was applied for the spreading and interfacial surface formation of corium with the surrounding air. The effects of the key parameters were evaluated for the corium spreading, including the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The results showed a reasonable trend of corium progression influenced by the changes in the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The modeling of the viscosity appropriate for corium and the radiative heat transfer was critical, since the front progression and temperature profiles were strongly dependent on the models. Further development is required for the code to consider the formation of crust on the surfaces of corium and the interaction with the substrate.

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

Measurement of Heat Leak through Multi-Layer Insulation (적층단열재의 열침입량 측정)

  • Kim D. L.;Yang H. S.;Jung W. M.;Lee B. S.;Shin P. K.;Hwang S. D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.39-42
    • /
    • 2005
  • In this paper, the thermal characteristics of multilayer insulation (MLI) were experimentally investigated by using boil-off calorimetry method for seeking optimum standards of thermal insulation conditions. It is necessary to design the thermal insulating efficiency for applying to cryogenic instruments such as HTS power cable system. It is well known that the thermal characteristics and heat transfer of MLI are greatly affected by various MLI structures such as the number of layers and layer density, etc. However, it is difficult to know the thermal characteristics of MLI correctly. The heat leak by MLI between room temperature and liquid nitrogen temperature was measured at various conditions using a cylindrical cryostat. The cryostat consists of two guard vessels located at both end sides and a test vessel between them. The guard vessels are also filled with liquid nitrogen to prevent radiation heat leak through the both end side of the cylindrical test vessel to measure the heat leak only through MLI.

A Numerical Analysis of Heat Transfer in Bright Annealing Furnace of Stainless Steel Strip (Strainless steel strip 광휘어닐링로 내의 열전달 해석)

  • Ryou, H.S.;Jeong, Y.T.;Jang, B.L.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.228-233
    • /
    • 2009
  • In order to predict the temperature distribution of stainless steel strip in Bright Annealing (BA) furnace, we performed the analysis of heat transfer and fluid flow using STAR-CCM+. The analysis model included unsteady fluid flow, heat transfer with radiation and moving grid. Two kinds of radiative properties, emissivity and reflectivity, were applied to the stainless steel strip, one is constant and the other is variable with time. As we call, the BA furnaces of stainless steel strip have two different types, muffle and no-muffle. The using of muffle type has been faced with some problems such as rising in material price and shortening of life cycle, etc. So the development of no-muffle type BA furnace is very important in order to save energy cost, lower environmental load and increase the productivity. The designed (or expected) temperature of stainless steel strip coming out of BA furnace was about $1065^{\circ}C$ while the environment temperature maintains around $1100^{\circ}C$. The result of our calculation was very close (or similar) to design temperature, and the application of radiative properties variable with time produced more accurate result than applying constant ones.

A numerical study on the combined natural convection and radiation in a partially open complex enclosure with a heater and partitions (발열체와 격막이 있고 일부가 열린 복합공간내의 자연대류-복사열전달에 관한 수치적 연구)

  • Kim, Tae-Guk;Min, Dong-Ho;Han, Gyu-Ik;Son, Bong-Se;Seo, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.235-251
    • /
    • 1997
  • A numerical simulation on the combined natural convection and radiation is carried out in a partially open rectangular enclosure with a heater by using the finite volume and the S-8 discrete ordinate methods. The fluid inside the enclosure is considered as an absorbing, emitting and anisotropic scattering media. The heater causes a natural circulation of the fluid (10$^{5}$ $^{9}$ ) which results in significant in-flow of the ambient cold fluid through the partially open wall. Comparing the results of pure convection with those of the combined convection- radiation, the combined heat transfer results with small Planck numbers (P$_{l}$ <1.0) show much stronger circulation than those of the pure convection, and the fluid circulation is more evident for larger Rayleigh numbers. When one of three radiative properties - the medium absorption coefficient, the wall reflectivity, and the scattering albedo - increases, the fluid circulation and the heat transfer in the enclosure are reduced. The location of the heater and the open ratio of the right wall are also shown to affect the fluid circulation and heat transfer significantly. However, the anisotropy of the scattering phase function is shown to be unimportant for the fluid circulation and heat transfer within the enclosure considered in this study.