• Title/Summary/Keyword: Radiation dose distribution

Search Result 742, Processing Time 0.022 seconds

The Effect of Dose Distribution under Treatment Techniques on Cerebrospinal Irradiation (뇌 및 척수조사시 치료기법의 변화가 선량분포에 미치는 영향)

  • Lee, Seungchul;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • This study tries to evaluate the usefulness CSI treatment. Compare the standard technique and simple technique, using the volume region of a high dose of Field joints (hot spot) or low dose regions (cold Spot). In patients who agreed to this study, obtain CT image using CT simulator skull to pelvis region. Standard Technique were performed on the movement of the joint radiation field range and simple technique has set a treatment plan to secure the radiation field range and analyzed treatment planning. Under analysis standard technique occurred the area of the high dose(Hot Spot) for the area overlapping the field and simple technique showing a uniform doses. CI indices of standard technique and simple technique was 1.6~3, 1.6~1.87, CN indices was 0.32~0.53, 0.46~0.51 and HI indices was 0.11~0.33, 0.2~0.26. Therefore, adjacent to part of the dose distribution junction more equally than simple technique compared to the Standard Technique. Compare the dose distribution patterns using CI, CN, HI indices, showed a uniform dose distribution in the simple technique. so, simple technique was determined appropriate treatment the CSI.

Influence of Couch and Collimator on Dose Distribution of RapidArc Treatment Planning for Prostate Cancer in Radiation Therapy (치료테이블과 콜리메이터가 전립선암 래피드아크 치료계획의 선량분포에 미치는 영향)

  • Kim, Hyung-Dong;Kim, Byung-Young;Kim, Sung-Jin;Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We investigated the influence of photon energy, couch and collimator angle differences between arcs on dose distribution of RapidArc treatment planning for prostate cancer. RapidArc plans were created for 6 MV and 10 MV photons using 2 arcs coplanar and noncoplanar fields. The collimator angle differences between two arcs were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The plans were optimized using same dose constrains for target and OAR (organ at risk). To evaluate the dose distribution, plans were analyzed using CI (conformity index), HI (homogeneity index), QOC (quality of coverage), etc. Photon energy, couch and collimator angle differences between arcs had a little influence on the target and OAR. The difference of dosimetric indices was less than 3.6% in the target and OAR. However, there was significant increase in the region exposed to low dose. The increase of V15% in the femur was 6.4% (left) and 5.5% (right) for the 6 MV treatment plan and 23.4% (left), 24.1% (right) for the noncoplanar plan. The increase of V10% in the Far Region distant from target was 54.2 cc for the 6 MV photon energy, 343.4 cc for the noncoplanar and 457.8 cc for the no collimator rotation between arcs.

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

Optimization of CORVUS Planning System with PRIMART Linac for Intensity Modulated Radiation Therapy

  • Lee, Se-Byeong;Jino Bak;Cho, Kwang-Hwan;Chu, Sung-sil;Lee, Suk;Suh, Chang-ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.83-85
    • /
    • 2002
  • Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS(NOMOS) inverse planning machine, LANTIS(SIEMENS), PRIMEVIEW and PRIMART Linac(SIEMENS). The optimization of CORVUS planning system with PRIMART is an important work to get an efficient treatment plan. So, we studied two Finite Size Pencil Beams, 1.0 x 1.0 cm$^2$ and 0.5 x 1.0 cm$^2$, and four leaf transmission sets, 5%, 10%, 20%, 33%. We compared the dose distribution of target volume and delivery efficiency of the plan results.

  • PDF

A Study on the Dose Changes Depending on the Shielding Block Type of Irradiation During Electron Beam Theraphy (전자선치료 시 조사부위 차폐물 형태에 따른 선량변화 연구)

  • Lee, Sun-Yeb;Park, Cheol-Soo;Lee, Jae-Seung;Goo, Eun-Hoe;Cho, Jae-Hwan;Kim, Eng-Chan;Moon, Soo-Ho;Kim, Jin-Soo;Park, Cheol-Woo;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The primary focus of this study was to explore the variation in dose distributions of electron beams between different types of construction structure of cut-out blocks embodied in electron cones, given that the structure is considered one of the causes of multiple scattered radiation from electrons which may affect dose distributions. For evaluation, two types of cut-out blocks, divergency and straight, manufactured for this study, were compared in terms of area of interval in distribution of dose, and flatness and symmetric state of surface being radiated. The results showed that divergency cut-out blocks reduced the lateral scattering effects on the thickness of cut-out blocks more substantially than straight ones, leading to more uniform dose distribution at baseline depth. Notably in divergency cut-out blocks, the high dose area decreased more significantly, and more uniform dose distribution was observed at the edge of the irradiated field. This points to a need to consider the characteristics of dose distribution of electron beams when setting up radiotherapy planing at the venues. Therefore, this study is significant as an exploratory work for ensuring high accuracy in dose delivery for patients.

The Use of Polymer Gel for the Visualization of 3-D Dose Distribution in Brachytherapy Using Magnetic Resonance Imaging (방사선 근접치료에 있어서 핵자기공명영상을 이용한 3차원 방사선 선량분포도의 가시화를 위한 polymer 젤의 이용)

  • 강해진;조삼주;정은기;강승희;오영택;전미선;권수일
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.207-215
    • /
    • 1998
  • There have been many radiation measurement methods so far among which film dosimetry, TLD, and ion chamber are the most frequently used methods. But this study describes a new radiation measurement method which uses polymer gel and magnetic resonance imaging(MRI). The objective of this study is to fabricate a polymer gel sensitive to radiation and to generate a dose to MRI contrast relationship, and to apply this results to the radiation measurement for the brachytherapy. To do this, 12 cm diameter cylindrical gel phantom was made, and the phantom was irradiated using the 30 mm diameter circular collimator which was used for radiosurgery. And this irradiated phantom was scanned with MRI. To find out the relationship between the radiation dose and the transversal relaxation time, an image processing software(IDL) was used. From this study it is found out that the radiation dose showed linear relationship to the transversal relaxation time of the gel up to 17 Gy($R^2$=0.993) and they had a different relationship above 17 Gy. The dose distributions were calculated using these results for the Ir-192 sources, one for the HDR afterloading system and the other for a 2 mCi seed source. And these calculated dose distributions were compared to the ones from the treatment planning computers. From this study the dose to the irradiated gel's transversal relaxation time relationship was examined, and this result was tried for the measurement of the brachytherapy.

  • PDF

A Study on Dose Distribution of Electron Beams by Semiconductor Detector (반도체 검출기에 의한 전자선 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.19-25
    • /
    • 1984
  • There is not yet an universal method of electron dosimetry. The Authors measured dose distributions of the electron beams from Clinac-18 by means of silicon detector connected to X-Y recorder, and compared them in water phantom with dose distributions measured by film and ion chamber, both inserted in polystyrene phantom. The results are as followings, 1. Dose in build-up region increased with the field size for all energy, and depth dose profiles of $6{\sim}12MeV$ beam under the depth of maximum dose were independent of field size, but those of 15 and 18 MeV beam were dependent on the field size. 2. The widths of penumbra by semiconductor detector were narrower than those by film for same energy beam. 3. Depth dose profiles by three different dosimeter did not coincide each other. In the build-up region, dose by semiconductor detector was lower than that by any other dosimeter.

  • PDF

Analysis on the Effect of Field Width in the Delineation of Planning Target Volume for TomoTherapy (토모테라피에서 계획용표적체적 설정 시 필드 폭 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mee-Sun;Jung, Jae-Uk
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.323-331
    • /
    • 2010
  • The Hi-Art system for TomoTherapy allows only three (1.0 cm, 2.5 cm, 5.0 cm) field widths and this can produce different dose distribution around the end of PTV (Planning target volume) in the direction of jaw movement. In this study, we investigated the effect of field width on the dose difference around the PTV using DQA (Delivery quality assurance) phantom and real clinical patient cases. In the analysis with DQA phantom, the calculated dose and irradiated films showed that the more dose was widely spreaded out in the end region of PTV as increase of field width. The 2.5 cm field width showed a 1.6 cm wider dose profile and the 5.0 cm field width showed a 4.2 cm wider dose profile compared with the 1.0 cm field width in the region of 50% of maximum dose. The analysis with four patient cases also showed the similar results with the DQA phantom which means that more dose was irradiated around the superior and inferior end of PTV as an increase of field width. The 5.0 cm field width produced the remarkable high dose distribution around the end region of PTV and we could evaluate the effect quantitatively with the calculation of DVH (Dose volume histogram) of the virtual PTVs which were delineated around the end of PTV in the direction of jaw variation. From these results, we could verify that the margin for PTV in the direction of table movement should be reduced compared with the conventional margin for PTV when the large field such as 5.0 cm was used in TomoTherapy.

GafChromic Film Dosimetry for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 정위방사선 치료 시 GafChromic Film을 이용한 선량측정)

  • Han Seung Hee;Cho Byung Chul;Park Suk Won;Oh Do Hoon;Park Hee Chul;Bae Hoon Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate whether a GafChromic film applied to stereotactic radiosurgery with a linear accelerator could provide information on the value for acceptance testing and quality control on the absolute dose and relative dose measurements and/or calculation of treatment planning system. Materials and methods: A spherical acrylic phantom, simulating a patient's head, was constructed from three points. The absolute and relative dose distributions could be measured by inserting a GafChromic film into the phantom. We tested the use of a calibrated GafChromic film (MD-55-2, Nuclear Associate, USA) for measuring the optical density. These measurements were achieved by irradiating the films with a dose of 0-112 Gy employing 6 MV photon. To verify the accuracy of the prescribed dose delivery to a target isocenter using a five arc beams (irradiated in 3 Gy per one beam) setup, calculated by the Linapel planning system the absolute dose and relative dose distribution using a GafChromic film were measured. All the irradiated films were digitized with a Lumiscan 75 laser digitizer and processed with the RIT113 film dosimetry system. Results: We verified the linearity of the Optical Density of a MD-55-2 GafChromic film, and measured the depth dose profile of the beam. The absolute dose delivered to the target was close to the prescribed dose of Linapel within an accuracy for the GafChromic film dosimetry (of $\pm$3$\%$), with a measurement uncertainty of $\pm$1 mm for the 50$\~$90$\%$ isodose lines. Conclusion: Our results have shown that the absolute dose and relative dose distribution curves obtained from a GafChromic film can provide information on the value for acceptance. To conclude the GafChromic flim is a convenient and useful dosimetry tool for linac based radiosurgery.