• Title/Summary/Keyword: Radiation devices

Search Result 498, Processing Time 0.024 seconds

Radiation safety management for diagnostic radiation generators and employees in animal hospitals in Korea (동물병원의 진단용 방사선 발생장치 및 방사선종사자 안전관리 실태 조사)

  • An, Hyo-Jin;Kim, Chung-Hyun;Kwon, Young-Jin;Kim, Don-Hwan;Wee, Sung-Hwan;Moon, Jin-San
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.151-157
    • /
    • 2014
  • A nationwide survey on radiation safety management in Korean animal hospitals was conducted. By 2013, 53 radiation generators were registered as veterinary medical devices (41 X-ray generators and 12 computed tomography scanners). Additionally there were six approved laboratories for radiation equipment and protection facility, and five approved laboratories for radiation exposure of employees, respectively. By March 2013, 2,030 out of 3,829 animal hospitals operated radiation-generating devices. Among these devices, 389 (19.2%) out of 2,030 were not labeled with the model name and 746 (36.7%) were not labeled with production dates. Thus, most veterinary X-ray generators were outdated (42.6%) and needed replacements. When periodic inspections of 2,018 animal hospitals were performed after revision of the Veterinarians Act in 2011, the hospitals were found to be equipped with appropriate radiation generators and protection facilities. Among 2,545 employees exposed to radiation at the hospitals, 93.9% were veterinarians, 4.3% were animal nurse technicians, and 18% held other positions. Among 169 employees supervised by administrators, none of those had a weekly maximum operating load that exceeded $10mA{\cdot}min$. This study suggests that the radiation safety management system of animal hospitals was general good.

Study of Radiation Safety Management of Veterinary Hospital in Korea (동물병원 방사선 안전관리체계에 대한 연구)

  • Chae, Soo-young;Choi, Ho-jung;Lee, Young-won
    • Journal of Veterinary Clinics
    • /
    • v.37 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • This study investigated the effectiveness of radiation safety rules in animal hospital and the awareness and behavior of veterinary radiation workers. With the questionnaires, the data was collected from randomly selected veterinarians in animal hospitals and animal medical imaging centers. Collected data were about radiation device, shielding device, regulations, safety management, education, knowledge, behavior and awareness. Frequency, correlation and multiple regression analysis were performed. The medical devices related with radiation in animal hospital were X-ray (59%), CT (15%), fluoroscopy (12%), mobile X-ray (12%) and others (2%). The number of people using radiation shielding device is high. The answers were low on knowing radiation related regulation and receiving radiation protection education. The group with higher knowledge and awareness shows positive correlation with safety behavior. The increase of use of the radiation related medical devices in veterinary hospital causes the increase of radiation exposure risk. This study suggests that radiation safety management system and policies need to be developed to protect radiation workers and give them correct information and consciousness.

The Study of Transient Radiation Effects on Commercial Electronic Devices (즉발감마선에 의한 상용전자소자의 피해현상분석 연구)

  • Oh, Seugn-Chan;Lee, Nam-Ho;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1448-1453
    • /
    • 2012
  • In this study, we carried out transient radiation test for identify failure situation by a transient radiation effect on operational amplifier devices. This experiments were carried out using a 60 MeV electron beam pulse of the LINAC(Linear Accelerator) facility in the Pohang Accelerator Laboratory. In this test, we has found that a serious failure as a burn-out effect due to overcurrent on the partial electronic devices.

Modeling and Simulation for Transient Pulse Gamma-ray Effects on Semiconductor Devices (반도체 소자의 과도펄스감마선 영향 모델링 및 시뮬레이션)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1611-1614
    • /
    • 2010
  • The explosion of a nuclear weapon radiates a gamma-ray in the form of a transient pulse. If the gamma-ray introduces to semiconductor devices, much Electron-Hole Pairs(EHPs) are generated in depletion region of the devices[7]. as a consequence of that, high photocurrent is created and causes upset, latchup and burnout of semiconductor devices[8]. This phenomenon is known for Transient Radiation Effects on Electronics(TREE), also called dose-rate effects. In this paper 3D structure of inverter and NAND gate device was designed and transient pulse gamma-ray was modeled. So simulation for transient radiation effect on inverter and NAND gate was accomplished and mechanism for upset and latchup was analyzed.

Implementation of the Radiation Protection Module for Electronic Equipment from Pulsed Radiation and Its Function Tests (펄스방사선에 대한 전자장비 방호용 모듈구현 및 기능시험)

  • Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1421-1424
    • /
    • 2013
  • The electronic equipment which is exposed to high level pulsed radiation is damaged by Upset, Latchup, and Burnout. Those damages come from the instantaneous photocurrent from electron-hole pairs generated in itself. Such damages appear as losses of a power in military weapon system or as a blackout in aerospace equipment and eventually caused in gross loss of national power. In this paper, we have implemented a RDC(Radiation detection and control module) as a part of the radiation protection technology of the electronic equipment or devices from the pulsed gamma radiation. The RDC, which is composed of pulsed gamma-ray detection sensor, signal processors, and pulse generator, is designed to protect the an important electronic circuits from the a pulse radiation. To verify the functionality of the RDC, LM118s, which had damaged by the pulse radiation, were tested. The test results showed that the test sample applied with the RDC was worked well in spite of the irradiation of a pulse radiation. Through the experiments we could confirm that the radiation protection technology implemented with the RDC had the functionality of radiation protection for the electronic devices.

Simulation for Dose-Rate Latchup by Transient Radiation Pulse in CMOS Device (CMOS 소자에서 과도방사선펄스에 의한 Dose-Rate Latchup 모의실험)

  • Lee, Hyun-Jin;Lee, Nam-Ho;Hwang, Young-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1185-1186
    • /
    • 2008
  • A nuclear explosion emits a transient radiation pulse like gamma rays. Gamma rays have a high energy and cause unexpected effects in semiconductor devices. These effects are mainly referred to dose-rate latcup and dose-rate upset. By transient radiation pulse in CMOS devices, dose-rate latchup is simulated in this paper.

  • PDF

Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation

  • Kim, Minho;Bae, Jae Keon;Hong, Bong Hwan;Kim, Kyeong Min;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.539-545
    • /
    • 2019
  • Yttrium-90 is a useful therapeutic radioisotope for tumor treatment because of its high-energy-emitting beta rays. However, it has been difficult to select appropriate collimators and main energy windows for Y-90 Bremsstrahlung imaging using gamma cameras because of the broad energy spectra of Y-90. We used a Monte Carlo simulation to investigate the effects of collimator selection and energy windows on Y-90 Bremsstrahlung imaging. We considered both MELP and HE collimators. Various phantoms were employed in the simulation to determine the main energy window using primary-to-scatter ratios (PSRs). Imaging performance was evaluated using spatial resolution indices, imaging counts, scatter fractions, and contrast-to-noise ratios. Collimator choice slightly affected energy spectrum shapes and improved PSRs. The HE collimator performed better than the MELP collimator on all imaging performance indices (except for imaging count). We observed minor differences in SR and SF values for the HE collimator among the five simulated energy windows. The combination of an HE collimator and improved-PSR energy window produced the best CNR value. In conclusion, appropriate collimator selection is an important component of Bremsstrahlung Y-90 photon imaging and main energy window determination. We found HE collimators to be more appropriate for improving the imaging performance of Bremsstrahlung Y-90 photons.

A Comparison of Patient-specific Delivery Quality Assurance (DQA) Devices in Radiation Therapy (방사선치료에서 환자맞춤형 선량품질보증 장치의 비교)

  • Kyung Hwan Chang
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • This study aimed to compare the results of delivery quality assurance (DQA) using MapCHECK and OCTAVIUS for radiation therapy. Thirty patients who passed the DQA results were retrospectively included in this study. The point dose difference (DD) and gamma passing rate (GPR) were analyzed to evaluate the agreement between the measured and planned data for all cases, Plan complexity was evaluated to analyze dosimetric accuracy by quantifying the degree of modulation according to each plan. We analyzed the monitor units (MUs) and total MUs for each plan to evaluate the correlation between the MUs and plan complexity. We used a paired t-test to compare the DD and GPRs that were obtained using the two devices. The DDs and GPRs were within the tolerance range for all cases. The average GPRs difference between the two devices was statistically significant for the brain, and head and neck for gamma criteria of 3%/3 mm and 2%/2 mm. There was no significant correlation between the modulation index and total MUs for any of the cases. These DQA devices can be used interchangeably for routine patient-specific QA in radiation therapy.

Radiation Effects on the Power MOSFET for Space Applications

  • Lho, Young-Hwan;Kim, Ki-Yup
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.449-452
    • /
    • 2005
  • The electrical characteristics of solid state devices such as the bipolar junction transistor (BJT), metal-oxide semiconductor field-effect transistor (MOSFET), and other active devices are altered by impinging photon radiation and temperature in the space environment. In this paper, the threshold voltage, the breakdown voltage, and the on-resistance for two kinds of MOSFETs (200 V and 100 V of $V_{DSS}$) are tested for ${\gamma}-irradiation$ and compared with the electrical specifications under the pre- and post-irradiation low dose rates of 4.97 and 9.55 rad/s as well as at a maximum total dose of 30 krad. In our experiment, the ${\gamma}-radiation$ facility using a low dose, available at Korea Atomic Energy Research Institute (KAERI), has been applied on two commercially available International Rectifier (IR) products, IRFP250 and IRF540.

  • PDF

Introduction to Ground Radiation Antenna for Mobile Devices (휴대 단말기 그라운드 방사 안테나(GradiANT: Ground Radiation Antenna) 기술 소개)

  • Kim, Jihoon;Moon, Sungjin;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.951-959
    • /
    • 2015
  • Ground radiation antenna in mobile devices is becoming an issue for satisfying both miniaturization and high performance. Ground radiation antenna controls the characteristic mode of the ground plane and couples this mode with the ground radiation antenna, thereby having good radiation performance. In this paper, the characteristic mode theory and applications of ground radiation antenna will be introduced. The operating mechanism of single band, wideband and dual-band ground radiation antennas are studied.