• Title/Summary/Keyword: Radiation benefit

Search Result 153, Processing Time 0.019 seconds

Once vs. Twice Daily Thoracic Irradiation in Limited Stage Small Cell Lung Cancer (국한성 병기 소세포폐암의 방사선치료시 분할 조사방식에 따른 치료성적)

  • Kim, Jun-Sang;Kim, Jae-Sung;Kim, Ju-Ock;Kim, Sun-Young;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.291-301
    • /
    • 1998
  • Purpose : A retrospective study was conducted comparing single daily fraction (SDF) thoracic radiotherapy (TRT) with twice daily (BID) TRT to determine the potential benefit of BID TRT in limited-stage small cell lung cancer (SCLC). Endpoints of the study were response. survival, pattern of failure, and acute toxicity. Materials and Methods : Between November 1989 to December 1996, 78 patients with histologically proven limited-stage SCLC were treated at the Department of Therapeutic Radiology, Chungnam National University Hospital. Of these, 9 were irradiated for palliative intent, and 1 had recurrent disease. Remaining 68 patients were enrolled in this study. There were 26 patients with a median age of 58 years, and 22 (85$\%$) ECOG performance score of less than 1 in SDF TRT. There were 42 patients with a median age of 57 years, and 36 (86$\%$) ECOG performance score of less than 1 in BID TRT By radiation fractionation regimen, there were 26 in SDF TRT and 42 in BID TRT. SDF TRT consisted of 180 cGy, 5 days a week. BID TRT consisted of 150 cGy BID, 5 days a week in 13 of 42 and 120 cGy BID, in 29 of 42. And the twice daily fractions were separated by at least 4 hours. Total radiotherapy doses were between 5040 and 6940 cGy (median, 5040 cGy) in SDF TRT and was between 4320 and 5100 cGy (median, 4560 cGy) in BID TRT. Prophylactic cranial irradiation (PCI) was recommended for patients who achieved a CR. The recommended PCI dose was 2500 cGy/10 fractions. Chemotherapy consisted of CAV (cytoxan 1000 mg/$m^2$, adriamycin 40 mg/$m^2$, vincristine 1 mg/$m^2$) alternating with VPP (cisplatin 60 mg/$m^2$, etoposide 100 mg/$m^2$) every 3 weeks in 25 (96$\%$) of SDF TRT and in 40 (95$\%$) of BID TRT. Median cycle of chemotherapy was six in both group. Timing for chemotherapy was sequential in 23 of SDF TRT and in 3 BID TRT, and concurrent in 3 of SDF TRT and in 39 of BID TRT Follow-up ranged from 2 to 99 months (median, 14 months) in both groups. Results : Of the 26 SDF TRT, 9 (35$\%$) achieved a complete response (CR) and 14 (54$\%$) experienced a partial response (PR). Of the 42 BID TRT, 18 (43$\%$) achieved a CR and 23 (55$\%$) experienced a PR. There was no significant response difference between the two arms (p=0.119). Overall median and 2-year survival were 15 months and 26.8$\%$, respectively. The 2-year survivals were 26.9$\%$ and 28$\%$ in both arm, respectively (p=0.51). The 2-rear survivals were 35$\%$ in CR and 24.2$\%$ in PR, respectively. The grade 2 to 3 esophageal toxicities and grade 2 to 4 neutropenias were more common in BID TRT (p=0.028 0.003). There was no difference in locoregional and distant metastasis between the two arms (p=0 125 and 0.335, respectively). The most common site of distant metastasis was the brain. Conclusion : The median survival and 2-year survival were 17 months and 20.9$\%$ in SDF TRT with sequential chemotherapy, and 15 months and 28$\%$ in BID TRT with concurrent chemotherapy, respectively. We did not observe a substantial improvement of long-term survival in the BID TRT with concurrent chemotherapy compared with standard schedules of SDF TRT with sequential chemotherapy. The grade 2 to 3 esophageal toxicities and glade 2 to 4 neutropenias were more common in BID TRT with concurrent chemotherapy. Although the acute toxicities were more common in BID TRT with concurrent chemotherapy than SDF TRT with sequential chemotherapy, a concurrent chemotherapy and twice daily TRT was feasible. However further patient accrual and long-term follow up are needed to determine the potential benefits of BID TRT in limited-stage SCLC.

  • PDF

Current Status and Future Perspective of PET (PET 이용 현황 및 전망)

  • Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Positron Emission Tomography (PET) is a nuclear medicine imaging modality that consists of systemic administration to a subject of a radiopharmaceutical labeled with a positron-emitting radionuclide. Following administration, its distribution in the organ or structure under study can be assessed as a function of time and space by (1) defecting the annihilation radiation resulting from the interaction of the positrons with matter, and (2) reconstructing the distribution of the radioactivity from a series of that used in computed tomography (CT). The nuclides most generally exhibit chemical properties that render them particularly desirable in physiological studies. The radionuclides most widely used in PET are F-18, C-11, O-15 and N-13. Regarding to the number of the current PET Centers worldwide (based on ICP data), more than 300 PET Centers were in operation in 2000. The use of PET technology grew rapidly compared to that in 1992 and 1996, particularly in the USA, which demonstrates a three-fold rise in PET installations. In 2001, 194 PET Centers were operating in the USA. In 1994, two clinical and research-oriented PET Centers at Seoul National University Hospital and Samsung Medical Center, was established as the first dedicated PET and Cyclotron machines in Korea, followed by two more PET facilities at the Korea Cancer Center Hospital, Ajou Medical Center, Yonsei University Medical Center, National Cancer Center and established their PET Center. Catholic Medical School and Pusan National University Hospital have finalized a plan to install PET machine in 2002, which results in total of nine PET Centers in Korea. Considering annual trends of PET application in four major PET centers in Korea in Asan Medical Center recent six years (from 1995 to 2000), a total of 11,564 patients have been studied every year and the number of PET studies has shown steep growth year upon year. We had 1,020 PET patients in 1995. This number increased to 1,196, 1,756, 2,379, 3,015 and 4,414 in 1996,1997,1998,1999 and 2000, respectively. The application in cardiac disorders is minimal, and among various neuropsychiatric diseases, patients with epilepsy or dementia can benefit from PET studios. Recently, we investigated brain mapping and neuroreceptor works. PET is not a key application for evaluation of the cardiac patients in Korea because of the relatively low incidence of cardiac disease and less costly procedures such as SPECT can now be performed. The changes in the application of PET studios indicate that, initially, brain PET occupied almost 60% in 1995, followed by a gradual decrease in brain application. However, overall PET use in the diagnosis and management of patients with cancer was up to 63% in 2000. The current medicare coverage policy in the USA is very important because reimbursement policy is critical for the promotion of PET. In May 1995, the Health Care Financing Administration (HCFA) began covering the PET perfusion study using Rubidium-82, evaluation of a solitary pulmonary nodule and pathologically proven non-small cell lung cancer. As of July 1999, Medicare's coverage policy expanded to include additional indications: evaluation of recurrent colorectal cancer with a rising CEA level, staging of lymphoma and detection of recurrent or metastatic melanoma. In December of 2001, National Coverage decided to expand Medicare reimbursement for broad use in 6 cancers: lung, colorecctal, lymphoma, melanoma, head and neck, and esophageal cancers; for determining revascularization in heart diseases; and for identifying epilepsy patients. In addition, PET coverage is expected to further expand to diseases affecting women, such as breast, ovarian, uterine and vaginal cancers as well as diseases like prostate cancer and Alzheimer's disease.

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.