• 제목/요약/키워드: Radiation attenuation

검색결과 265건 처리시간 0.035초

An empirical study on the X-ray attenuation capability of n-WO3/n-Bi2O3/PVA with added starch

  • Oliver, Namuwonge;Ramli, Ramzun Maizan;Azman, Nurul Zahirah Noor
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3459-3469
    • /
    • 2022
  • Matrix composites of n-WO3/n-Bi2O3/PVA with different loadings of n-WO3/n-Bi2O3 mixtures (0-15 wt%) and starch (0 and 3 wt%) were fabricated by using melt-mixing method. The X-ray attenuation capability were evaluated based on mass attenuation coefficient (μ/⍴) using a general diagnostic X-ray machine at 40-100 kVp. The effect of starch addition on the dispersion of the fillers in the PVA matrix were observed by using FESEM through morphological analysis. The fabricated samples have shrunken and caused their thickness to be decreased (0.35 mm-0.55 mm) after the drying process even though fixed thickness (2.0 mm) was set initially. The density and HVL values of the samples with 3 wt% starch was seen lower than samples without starch (0 wt%), however the former have provided improvement in filler dispersion and better X-ray attenuation capability compared to the latter. As conclusion, the matrix composite of n-WO3/n-Bi2O3/PVA with 15 wt% of n-Bi2O3, 8 wt% of n-WO3 and 3 wt% starch can be selected as the best promising candidate for X-ray shielding materials.

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

UV 화염감지기의 감지성능에 대한 분진분위기의 영향 (Influence of Dust Environment on the Detection Capability of Ultraviolet Flame Detector)

  • 김홍;호예
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.113-119
    • /
    • 1997
  • UV 화염감기의 분진분위기에서의 성능저하를 고찰하기 위하여 세제분말, 탄진 및 분말 소화약제의 분진운을 형성하였고 LPG 및 가솔린 화염을 사용하여 UV 화염감지기의 감지성능을 고찰하였다. 분진 분위기 하에서의 UV 화염감지기의 성능을 분진의 농도와 분진층의 거리가 증가함에 따라 뚜렷한 증가를 보였으며, 분진의 화학적, 물리적 특성에 커다란 영향을 받았다. 따라서 UV 화염감지기를 분진 분위기에서 사용한 경우 특별한 주의를 기울일 필요가 있는 것으로 사려된다.

  • PDF

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Broad Beam Gamma-Ray Spectrometric Studies with Environmental Materials

  • El-Kateb, Abdul-Hamid Hussein
    • Journal of Radiation Protection and Research
    • /
    • 제43권2호
    • /
    • pp.75-84
    • /
    • 2018
  • Background: Gamma-ray spectrometry helps in radiation shielding problems and different applications of radioisotopes. Experimental arrangements including broad beam geometries are widely used. The aim is to investigate and evaluate the ${\gamma}-ray$ spectra via attenuation by environmental materials. Materials and Methods: The photo peak to nominated parts in the ${\gamma}-ray$ spectra and the attenuation coefficients ${\mu}_b/{\rho}$ from broad beam geometries are measured for the materials water, soil, sand and cement at the energies 0.662, 1.25, and 1.332 MeV with a $3{^{\prime}^{\prime}}{\times}3{^{\prime}^{\prime}}$ NaI(Tl) detector. Results and Discussion: The ${\gamma}-ray$ spectra vary according to changes in the effective atomic number $Z_{eff}$ of the attenuator, the photon energy and the solid angle. The peak to total ratios are the most sensitive parts to variations in the experimental conditions and overturn in the region 0.663 MeV to 1.332 MeV. This is indicated as inversion trend. The results are discussed in view of $Z_{eff}$ and the experimental conditions. The intensity build-up is larger at the lower energy and larger scattering angles in agreement with Klein-Nishina formula and other results. The build-up factor B is$${\sim_=}$$1 at high ${\gamma}-energies$ and small scattering angles. Conclusion: The sensitivity to material characteristics decrease gradually from peak: to total, to Compton valley, to Compton plateau ratios. Rigorous collimation is necessary at small energies. Cement, of the largest $Z_{eff}$, is characterized by the maximum broad beam mass attenuation coefficients ${\mu}_b/{\rho}$. The obtained results provide information to decide for the suitable experimental set-up based on aim of the work.

Muscle Radiation Attenuation in the Erector Spinae and Multifidus Muscles as a Determinant of Survival in Patients with Gastric Cancer

  • An, Soomin;Kim, Youn-Jung;Han, Ga Young;Eo, Wankyu
    • Journal of Korean Biological Nursing Science
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2022
  • Purpose: To determine the prognostic role of muscle area and muscle radiation attenuation in the erector spinae (ES) and multifidus (MF) muscles in patients undergoing gastrectomy. Methods: Patients with stage I-III gastric cancer undergoing gastrectomy were retrospectively enrolled in this study. Clinicopathologic characteristics were collected and analyzed. Both paraspinal muscle index of ES/MF muscles (PMIEM) and paraspinal muscle radiation attenuation in the same muscles (PMRAEM) were analyzed at the 3rd lumbar level using axial computed tomographic images. Cox regression analysis was applied to estimate overall survival (OS) and disease-free survival (DFS). Results: There was only a weak correlation between PMIEM and PMRAEM (r= 0.28). Multivariate Cox regression revealed that PMRAEM, but not PMIEM, was an important determinant of survival. PMRAEM along with age, tumor-node-metastasis (TNM) stage, perineural invasion, and serum albumin level were significant determinants of both OS and DFS that constituted Model 1. Harrell's concordance index and integrated area under receiver operating characteristic curve were greater for Model 1 than for Model 2 (consisting of the same covariates as Model 1 except PMRAEM) or Model 3 (consisting of only TNM stage). Conclusion: PMRAEM, but not PMIEM, was an important determinant of survival. Because there was only a weak correlation between PMIEM and PMRAEM in this study, it was presumed that they were mutually exclusive. Model 1 consisting of age, TNM stage, perineural invasion, serum albumin level, and PMRAEM was greater than nested models (i.e., Model 2 or Model 3) in predicting survival outcomes.

3D 프린팅 팬텀의 섬광카메라 적용 평가 (Evaluation of Scintillation Camera Applications of 3D Printing Phantom)

  • 박훈희;이주영;김지현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.343-350
    • /
    • 2021
  • 3D printing technology is an additive manufacturing technology produced through 3D scanning or modeling method. This technology can be produced in a short time without mold, which has recently been applied in earnest in various fields. In the medical field, 3D printing technology is used in various fields of radiology and radiation therapy, but related research is insufficient in the field of nuclear medicine. In this study, we compare the characteristics of traditional nuclear medicine phantom with 3D printing technology and evaluate its applicability in clinical trials. We manufactured the same size phantom of poly methyl meta acrylate(PMMA) and acrylonitrile butadiene styrene(ABS) based on the aluminum step wedge. We used BrightView XCT(Philips Health Care, Cleveland, USA) SPECT/CT. We acquired 60 min list mode for Aluminum, PMMA and ABS phantoms using Rectangular Flood Phantom (Biodex, New York, USA) 99mTcO4 3 mCi(111 MBq), 6 mCi (222MBq) and 57Co Flood phantom(adq, New Hampshire, USA). For the analysis of acquired images, the region of interest(ROI) were drawn and evaluated step by step for each phantom. Depending on the type of radioisotope and radiation dose, the counts of the ABS phantom was similar to that of the PMMA phantom. And as the step thickness increased, the counts decreased linearly. When comparing the linear attenuation coefficient of Aluminum, PMMA and ABS phantom, the linear attenuation coefficient of the aluminium phantom was higher than that of the others, and the PMMA and ABS phantom had similar the linear attenuation coefficient. Based on ABS phantom manufactured by 3D printing technology, as the thickness of the PMMA phantom increased, the counts and linear attenuation coefficient decreased linearly. It has been confirmed that ABS phantom is applicable in the clinical field of nuclear medicine. If the calibration factor is applied through further research, it is believed that practical application will be possible.

Enhancement and optimization of gamma radiation shielding by doped nano HgO into nanoscale bentonite

  • Allam, Elhassan A.;El-Sharkawy, Rehab M.;El-Taher, Atef;Shaaban, E.R.;RedaElsaman, RedaElsaman;Massoud, E. El Sayed;Mahmoud, Mohamed E.
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2253-2261
    • /
    • 2022
  • In this study, nano-scaled shielding materials were assembled and fabricated by doping different weight percentages of Nano-mercuric oxide (N-HgO) into Nano-Bentonite (N-Bent) based on using (100-x% N-Bent + x% N-HgO, x = 10, 20, 30, and 40 wt %). The fabricated N-HgO/N-Bent nanocomposites were characterized by FT-IR, XRD, and SEM and evaluated to evaluate their shielding properties toward gamma radiation by using four different γ-ray energies form three point sources; 356 keV from 133Ba, 662 keV from 137Cs as well as 1173, and 1332 keV from 60Co. The γ-rays mass attenuation coefficients were plotted as a function of the doped N-HgO concentrations into N-HgO/N-Bent nanocomposites. The computed values of mass attenuation coefficients (µm), effective atomic number (Zeff) and electron density (Nel) by the as-prepared samples were found to increase, while the half value layer (HVL) and mean free path (MFP) were identified to decrease upon increasing the N-HgO contents. It was concluded also that the increase in N-HgO concentration led to a direct increase in the mass attenuation coefficient from 0.10 to 0.17 cm2/g at 356 keV and from 0.08 to 0.09 cm2/g at 662 keV. However, a slight increase was observed in the identified mass attenuation coefficients at (1172 and 1332 keV).

전신방사선조사(TBI)시 다이오드 측정기(Diode detector) 및 열형광선량계(TLD)를 이용한 골조직 선량감쇄에 대한 고찰 (A study on dose attenuation in bone density when TBI using diode detector and TLD)

  • 임현실;이정진;장안기;김완선
    • 대한방사선치료학회지
    • /
    • 제15권1호
    • /
    • pp.67-77
    • /
    • 2003
  • I. 목적 전신방사선조사(TBI)시 균등한 선량을 조사할 목적으로 사용되는 각 신체부위별 보상체(compensator) 두께의 결정은 열형광선량계(TLD)를 이용하여 표면선량(surface dose)를 측정하고, 심부선량(depth dose)으로 환산하는 방법을 주로 이용한다. 그러나 이와 같은 방법은 골(bone) 조직에 대한 선량감쇄(dose attenuation)의 영향이 고려되지 않아 신체중심부에서의 정확한 심부선량을 알 수가 없다. 이에 본 연구에서는 열형광선량계와 다이오드측정기(Diode detector)로 표면선량과 심부선량을 동시에 측정하여 골조직에서의 선량감쇄 영향을 알아보고자 한다. II. 대상 및 방법 실험은 본원에서 TBI 치료를 받은 5명의 환자를 대상으로 실시하였으며, 측정장비로는 Siemens Mevatron 10MV X-ray, TLD(Harshaw 5500), Diode detector(Sun Nuclear)를 사용하였다. 선량 조사방법은 복부의 배꼽(umblicus)를 중심으로 하여 이문대향법(Bilateral)으로 150cGy가 조사되도록 하였다. 측정방법은 열형광선량계로 두부, 경부, 대퇴부, 슬관절, 족관절, 부위의 표면선량을 측정하였으며, 이 가운데 대퇴부, 슬관절, 족관절에서는 중심부 선량측정이 가능하여 동시에 심부선량을 측정하였다. 또한 실험대상자 중 3명의 환자는 상기와 같은 부위(두부, 경부, 대퇴부, 슬관절, 족관절)에 다이오드측정기로 심부선량을 측정하였다. III. 결과 TLD로 측정한 표면선량을 심부선량으로 환산한 값은 두부, 경부, 대퇴부, 슬관절, 족관절에서 각각 $92.78{\pm}3.3,\;104.34{\pm}2.3,\;98.03{\pm}1.4,\;99.9{\pm}2.53,\;98.17{\pm}0.56$ 이었고, 중심부 심부선량 측정이 가능한 대퇴부, 슬관절, 족관절에서는 각각 $86{\pm}1.82,\;93.24{\pm}2.53,\;91.50{\pm}2.84$로 나타났다. 따라서 표면선량과 중심부 심부선량 비교가 가능한 대퇴부, 슬관절, 족관절에서의 TLD의 측정치를 비교해보면 부위에 따라 최소 $6.67\%{\sim}$ 최대 $11.65\%$까지 골조직에 의한 선량감소가 나타나는 것을 알 수가 있다. 또한, Diode detector로 측정한 심부선량 값은 두부, 경부, 대퇴부, 슬관절, 족관절에서 각각 $95.23{\pm}1.18,\;98.33{\pm}0.6,\;93.5{\pm}1.5,\;87.3{\pm}1.5,\;86.90{\pm}1.16$으로 나타났으며, TLD로 측정한 대퇴부, 슬관절, 족관절에서의 표면선량과 비교했을 때 부위에 따라 최소 $4.53\%{\sim}$ 최대 $12.6\%$ 까지 차이를 보였다. 그리고 골조직에 의한 선량감쇄의 영향이 적은 복부(배꼽)에서는 열형광선량계 및 다이로드측정기로 측정한 값이 각각 $101.58{\pm}0.95,\;104.77{\pm}1.18$로 큰 차이가 없었다. IV 결론 전신방사선조사시 표면선량을 측정하여 심부선량으로 환산한 값은 골조직의 감쇄영향을 고려하지 못하므로 다이로드측정기(Diode detector) 또는 열형광선량계(TLD)로 중심부선량을 직접 측정하는 것이 중요하다. 그러나 중심부의 심부선량을 직접 측정할 수 없을 경우에는 골조직의 감쇄영향을 고려하여 복부배꼽에서의 선량보다 $5\%{\sim}10\%$ 정도의 선량이 초과 조사되도록 보상물질의 두께를 적절하게 조절하는 것이 필요할 것으로 사료된다.

  • PDF