• Title/Summary/Keyword: Radiation Protection Product

Search Result 74, Processing Time 0.041 seconds

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

Protective Effects of a Herbal Composition (HemoHIM) Against Apoptosis Induced by Oxidative Stress of Hydrogen Peroxide (과산화수소의 산화적 스트레스로 유도된 Apoptosis에 대한 생약복합조성물(HemoHIM)의 방호효과 평가)

  • Shin, Sung-Hae;Kim, Do-Soon;Kim, Mi-Jung;Kim, Sung-Ho;Jo, Sung-Kee;Byun, Mung-Woo;Yee, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1127-1132
    • /
    • 2006
  • In our previous study, a novel herb mixture (HIM-I) of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix was developed to protect the intestinal and immune systems and promote its recovery against radiation damage. A new herbal composition (HemoHIM) with the high immune modulating activity was developed from HIM-I. HIM-I was fractionated into ethanol fraction (HIM-I-E) and polysaccharide fraction (HIM-I-P). And HemoHIM was prepared by adding HIM-I-P to HIM-I. HemoHIM showed more effective than HIM-I in immune modulation as well as radioprotection. The present study is designed to investigate the protective effects of HIM-I, HIM-I-P, and HemoHIM on hydrogen peroxide $(H_2O_2)$ induced apoptosis of human promyelocytic leukemia (HL-60) cells. It was shown that $H_2O_2$ treatment reduced the viability of cells, and increased appearance of DNA ladders, hypodiploid (subG1) cells, and phosphatidylserine translocation level. Pretreatment of HemoHIM significantly reduced the cytotoxic effect induced by $H_2O_2$, associated with reducing the translocation of phosphatidylserine, hypodiploid cells and DNA ladders. HemoHIM appeared to be more protective than HIM-I against $H_2O_2$ induced apoptosis whereas, it exhibited similar activity to HIM-I-P. These results indicated that HemoHIM might be an useful agent for protection against oxidative stress $(H_2O_2)-induced$ apoptosis as well as immune modulation, especially since it is a relatively nontoxic natural product.

Anti-Inflammatory Effect of Ixeris dentata on Ultraviolet B-Induced HaCaT Keratinocytes

  • Kim, Sung-Bae;Kang, Ok-Hwa;Keum, Joon-Ho;Mun, Su-Hyun;An, Hyun-Jin;Jung, Hyun-Ju;Hong, Seung-Heon;Jeong, Dong-Myong;Kweon, Kee-Tae;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB) irradiation induces skin damage and inflammation through the secretion of various cytokines, which are immune regulators produced by cells. To prevent the initiation of skin inflammation, keratinocytes that have been irreversibly damaged by radiation must be removed through the apoptotic mechanism. Ixeris dentata (family: Asteraceae) is a perennial medicinal herb indigenous to Korea. It has been used in Korea, China, and Japan to treat in digestion, pneumonia, diabetes, hepatitis, and tumors. To gain insight into the anti-inflammatory effects of I. dentata, we examined its influence on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells), by observing cells that were stimulated with UVB in the presence or absence of I. dentata. In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of mitogen-activated protein kinase (MAPKs). I. dentata inhibited UVBinduced production of the pro-inflammatory cytokine interleukin (IL)-6 in a dose-dependent manner. Further, I. dentata inhibited the UVB-induced expression of cyclooxygenase (COX)-2. Furthermore, I. dentata inhibited the phosphorylation of c-Jun NH2-terminal kinase and p38 MAPKs, suggesting that it inhibits the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression, by blocking MAPK phosphorylation. These results suggest that I. dentate can potentially protect against UVB-induced skin inflammation.

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF