• Title/Summary/Keyword: Radiation Properties

Search Result 1,335, Processing Time 0.027 seconds

Thermoluminescence Characteristics of Smart Phone Tempered Glass (스마트폰 강화유리의 열형광 특성)

  • Je, Jaeyong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.433-437
    • /
    • 2020
  • Principles of Radiation Detection and measurement include luminescence, ionization and chemical reactions. In this study, thermoluminescent properties were analyzed by exposure radiation on the glass for protective glass of smart phone. In order to analyze the thermoluminescent characteristics by radiation, 6 MV X-ray 100 cGy was irradiated to the powder annealing at 300 ℃ by grinding the tempered glass and original tempered glass. As a result of measuring the amount of thermoluminescent respectively irradiated material, the thermoluminescent increased by 3 times in the tempered glass, and when the tempered glass was grinding by powder the thermoluminescent was 2.4 times increased. Based on these results, the liquid crystal protective glass of the smart phone is evaluated as a tracer material to evaluate the radiation exposure and dose of the personal radiation monitoring.

Thermal Stabilization Effect of PAN Nanofibers Irradiated by Electron Beam Irradiation (전자선 처리된 PAN 나노섬유의 열안정화 효과)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Polyacrylonitrile (PAN) is one of the most widely used precursor polymers for making high performance carbon fibers. Conversion of PAN fibers to good quality carbon fibers requires an essential stabilization step prior to carbonization. Electron beam irradiation is an excellent technique for modifying the physical properties of materials. This study aimed to elucidate the effects of electron beam irradiation on the stabilization reactions of PAN nanofibers. FT-IR analysis indicated that the stabilization of irradiated PAN nanofibers was initiated at a lower temperature. The TG curve of PAN nanofibers showed a significant decrease of weight loss step between 280 and $320^{\circ}C$. In the case of irradiated PAN nanofibers, weight loss sudden weight did not loss occurs.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

Fabrication of Electrospun Si-Zr-C Fibers by Electron Beam Irradiation (전자선 조사를 이용한 전기방사된 Si-Zr-C 섬유의 제조)

  • Seo, Dong Kwon;Jeun, Joon Pyo;Kim, Hyun Bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.265-269
    • /
    • 2010
  • Silicon-based non-oxide ceramic carbide fiber is one of the leading candidate ceramic materials for engineering applications because of its excellent mechanical properties at high temperature and good chemical resistance. In this study, polycarbosilane(PCS) and zirconium butoxide were used as a precursor to prepare polyzirconocarbosilane (PZC) fibers. A polymer solution was prepared by dissolving PCS in zirconium butoxide (50/50 wt%). This solution was heated at $250^{\circ}C$ in a nitrogen atmosphere for 2 hour with stirring, and then dried in a vacuum oven for 48 hour. PZC fibers were fabricated using an electrospinning technique. The fibers were irradiated with an electron beam to induce structural crosslinking. Crosslinked PZC fibers were heat treated at $1,300^{\circ}C$ in a nitrogen atmosphere. The microstructures of PZC fibers were examined by SEM. Chemical structures of PZC fibers were examined by FT-IR and XRD. Thermal stability of PZC fibers was investigated by TGA.

Sound Radiation Analysis of Tire under The Action of Moving Line Forces (이동분포하중을 받는 타이어의 음향방사 해석)

  • Kim, Byoung-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.529-532
    • /
    • 2011
  • A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of vehicle tires under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dash pots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The expression for sound power is integrated numerically and the results examined as a function of Mach number, wave-number ratio and stiffness factor. The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the Spatial Transformation of Sound Field techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.

  • PDF

Investigation of 3D Printed Electrically Small Folded Spherical Meander Wire Antenna

  • Kong, Myeongjun;Shin, Geonyeong;Lee, Su-Hyeon;Yoon, Ick-Jae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.228-232
    • /
    • 2017
  • The radiation properties and fabrication precautions of a 3D printed, electrically small folded spherical meander wire monopole antenna are investigated. The antenna is self-resonant and shows sufficiently high radiation efficiency at an electrical size ka of 0.4, with the radiation quality factor Q approaching the lower physical bound. In antenna fabrication, the possible structural deformation due to gravity is examined before the antenna frame is 3D-printed. The required conductivity is achieved by multiple manual paintings of a silver paste. The radiation efficiency and pattern show very good agreement with the computed expectations, whereas the resonant frequency deviates by 11.8%. The method to minimize such a fabrication error when using 3D printing technology for wire antennas is discussed.

Evaluation of Irradiated Oxidation of XLPE Based on Thermal and IR Reflection Properties

  • Ryu, Boo-Hyung;Lee, Chung;Kim, Ki-Yup
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • For evaluating the radiation degradation of cross-linked polyethylene (XLPE) cable insulation due to the irradiated oxidation, XLPE was irradiated with ${\gamma}$-ray. For each irradiated samples, TGA, DSC, FT-IR, and tensile tests were carried out. Regarding radiation degradation, oxidative process was predominant. TGA, DSC and FT-IR can be useful tools for evaluating the radiation degradation due to the irradiated oxidation because these analyses need only small amount of samples. The results of TGA, DSC and FTIR analyses showed the similar tendency for irradiated degradation. They can be useful tools for evaluating the oxidation of insulating material by non-destructive testing.

Radiation Crosslinking and Shrinkable Properties of PVC (PVC의 방사선 가교와 열수축 특성)

  • Nho, Young Chang
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.341-348
    • /
    • 1992
  • PVC was compounded with various crosslinking agents, plasticizers and acrylonitrile butadiene rubber(NBR) to evaluate their effects on the radiation gel percent, elongation at break, heat distortion and heat shrinkage. Gel yield of PVC increased with increasing unsaturation levels per molecular weight of crosslinking agents while PVC containing NBR was more sensitive to crosslinking than PVC itself regardless of the types of crosslinking agents and plasticizers. It was found that gel percent was increased with increasing radiation dose, while heat distortion was decreased with increasing gel percent. Heat shrinkage was increased with decreasing stretching temperature and increasing annealing temperature.

  • PDF

Effect of Adhesives on the Best Acoustic Radiation Ratio of Sound board for Musical Instrument (악기 향판재의 최적공진비에 미치는 접착제의 영향)

  • 이화형
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2000
  • This study was carried out to analyze the ultrasonic properties of sound board which was glued with various adhesives and to evaluate which adhesive is the best for the acoustic radiation of the musical instrument. The results are as follows: 1. Animal glue is the best adhesive for the sound board with respect to the acoustic radiation ratio of the musical instruments. Epoxy resin and polyvinyl acetate resin are the next group, urea formaldehyde resin and Hot melt are the third group, polychloroprene(CR) resin is the lowest. 2. Epoxy resin, animal glue and Titebond(PVA) give the highest shear strength and the highest wood failure relatively Hot melt and polychloroprene(CR) resin do not meet the standard because of low wood failure.

  • PDF