• 제목/요약/키워드: Radiation Properties

검색결과 1,335건 처리시간 0.032초

감마선을 이용한 폴리비닐피롤리돈/카파-카라기난/1,2-헥산디올 하이드로젤의 제조 및 특성 (Preparation and Characterization of Polyvinylpyrrolidone/${\kappa}$-Carrageenan/Hexanediol Hydrogel by Gamma-ray Irradiation)

  • 한일수;임윤묵;권희정;박종석;노영창
    • 폴리머
    • /
    • 제35권1호
    • /
    • pp.13-16
    • /
    • 2011
  • 본 연구에서는 생체 적합성이 우수한 합성고분자 폴리비닐피롤리돈(PVP)과 천연고분자 카피-카라기난(${\kappa}C$), 1,2-헥산디올(HD)을 혼합하여 감마선 조사에 의한 방사선 가교로 하이드로젤을 제조하였다. 방사선 조사량은 25 kGy, ${\kappa}C$의 농도는 3 wt%로 고정하였다. 이렇게 제조된 하이드로젤의 의 PVP, HD의 농도에 따른 물리적 특성을 관찰하였다. PVP의 농도가 증가할수록 피롤리돈 분자 사이의 가교반응으로 젤화율과 연장강도는 증가하였고, 팽윤도는 감소하였다. 반면에 HD의 농도가 증가할수록 젤화율과 인장강도는 감소하였으며, 팽윤도는 증가하였다. 항균성 실험을 통해 HD를 함유한 하이드로젤에서 항곰팡이성 활성이 관찰되었다.

당량비 변화에 따른 복사 특성이 3차원 난류 연소에 미치는 영향 연구 (Study of the Radiation Effect by Equivalence ratio change on the 3-D Turbulent Combustion)

  • 김태국;윤경범;민동호;장희철;김진수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.79-85
    • /
    • 2006
  • Radiative heat transfer is very important in many combustion systems since they are operated in high temperature. Fluid flows in most of the combustion systems are turbulent to promote fast mixing of the hydrocarbon fuel and oxidant. Major combustion products are $CO_2$ and $H_2O$. The turbulent flow is modeled by using the standard ${\kappa}-{\epsilon}$ model and the radiation transfer is modeled by using the discrete ordinates method where the radiative gas properties are calculated by using the weighted sum of gray gases model with a gray gas regrouping(WSGGM-RG). Effect of the radiation on the combustion characteristics in a three-dimensional rectangular enclosure is studied by changing the equivalence ratio. Results show that the radiation plays a significant role on the heat transfer in the combustion systems by resulting in a temperature drop of 16% as compared to that obtained without radiation. The equivalence ratio also affects the combustion by different contribution of the radiative transfer with different gas compositions.

  • PDF

Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Han, Xia;Oh, Min Chang;Jung, Uhee;Kim, In Gyu;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.312-319
    • /
    • 2016
  • Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin ($C_{28}H_{34}O_{15}$) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties.

Response of Radiation Driven Transient Burning of AP and HMX Using Flame Modeling

  • Lee, Changjin;Lee, Jae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1181-1187
    • /
    • 2001
  • The radiation driven response function (R$\_$q/) for AP and HMX propellant was obtained and compared with experimental results by using a simple $\alpha$$\beta$γ flame model rather than with detailed chemistry. For an AP propellant, the profile of heat release was assumed by the experimental data. The calculated R$\_$q/ shows a frequency shift of the peak amplitude to the higher frequency and a decrease in the maximum amplitude as radiation increases. In addition, it was found the increase in the total flux could enhance the mean burning rate γ$\_$b/ while the phase differences between the radiation and resulting conduction could consequently reduce the fluctuating amplitude Δγ$\_$b/. Fortunately, this is the qualitative duplication of the behavior recently observed in the experiments of RDX propellants. For HMX, the response function R$\_$q/ has been calculated and showed a quite good agreement with the experimental data. Even though the fairly good agreement of R$\_$q/ with experimental ones, the unsteady behavior of HMX was not reproduced as the radiation input increased. This is due to lack of the material properties of HMX or the physical understanding of HMX burning at high pressure.

  • PDF