• 제목/요약/키워드: Radiation Measure

검색결과 816건 처리시간 0.031초

Determination of Alpha Defect Center in the Nature Using EPR Spectroscopy

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • 한국자기공명학회논문지
    • /
    • 제5권1호
    • /
    • pp.13-18
    • /
    • 2001
  • Natural alpha radiation produced a stable defect center to certain minerals. Electron Paramagnetic Resonance(EPR) spectroscopy is a powerful tool f3r quantifying this defect center. EPR method has been applied to trace alpha-radiation effect around the uranium ore deposit. The results show that EPR technique can be used to measure rapidly and nondestructively the defect center produced by natural alpha radiation. In general, a good correlation was achieved between defect center concentration and actinide elements(U, Th). These results imply that the concentration of defect center is dependent on the alpha radiation dose over long time scale.

  • PDF

UWB 시스템의 방사출력 측정방법 연구 (The research of the UWB system radiation measurement)

  • 송홍종;차재상
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.277-286
    • /
    • 2010
  • 본 논문에서는 다가올 초고속 무선 서비스의 핵심 서비스 중의 하나로 부각되고 있는 UWB 무선통신 시스템에서 광대역 저출력 주파수 특성의 방사출력 측정방법에 대하여 연구하였다. UWB 시스템의 측정환경에서는 RMS 전계강도 측정, UWB PSD 측정, 검출 가능한 UWB 신호레벨, UWB 천이신호 수집 등에 대해서 언급하였다. 또한, CIDPR16-1에서 언급한 축력 측정법에 대해 분석하였으며 저 준위 e.i.r.p 복사 측정법에 대해 세부적으로 분석하였다. 마지막으로는 신호분석기를 이용하여 측정시의 고려사항에 대해 서술함으로써 UWB 시스템 상용화에 필요한 방사출력 측정에 필요한 내용을 마무리하였다.

메쉬 스크린을 적용한 해양구조물용 방풍 및 복사열 차단막 열유동특성에 관한 연구 (A Study on the Thermal and Flow Characteristics of Wind and Radiant Heat Shield for Offshore by using Mesh Screen)

  • 이중섭;진도훈
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.166-173
    • /
    • 2012
  • This study is about comparison of thermal and flow characteristics on the wind & radiant heat shield with STS mesh type screen for offshore. Numerical analysis was conducted to find transmission coefficient in the mesh and then analyse the flow characteristics about wind & radiant heat shield. The experiment method of solar radiation has been used as thermal radiation source to get the performance of radiant heat shield measurement. The sensor radiation device has been used to measure the reduction of solar radiation with various size of cells and at a distance of 0.5m and 1m from the cold face of the wind & radiant heat shield.

Tritium( $^3$H) Activity Measurement by the Liquid Scintillation Counting Method

  • Hwang, Sun-Tae;Oh, Pil-Jae;Lee, Min-Kie;Kim, Wi-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제10권E호
    • /
    • pp.299-302
    • /
    • 1994
  • At a nuclear power plant, environmental radioactivity monitoring is routine work for the radiation safety management For the environmental monitoring of tritium($^3$H) activity in water sampled liquid scintillation counting( LSC) method is applied to measure low- energy beta activity from tritium in the samples. The $^3$H activity is measured using the BECKMAN 5801 system at the KRISS( Korea Research Institute of Standards and Science) for evaluating the lower limits of detection( LLD) of $^3$H measurement and the measuring capability of low-level $^3$H activity at four nuclear Power Plant sites. The LSC systems used for low-level $^3$H activity measurements at the nuclear Power Plants are confirmed to satisfy throughout an intercomparison study under the experimental arrangements by the KRISS.

  • PDF

Development of a real-time mobile gamma-ray measurement system for shipboard use

  • Chang-Jong Kim;Mee Jang;Hyuncheol Kim;Jong-Myoung Lim;Wanno Lee;Gyu-Seong Cho
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4077-4082
    • /
    • 2023
  • Large areas must be rapidly screened to monitor radiation in marine environments. For this purpose, this study developed a mobile real-time gamma-ray measurement system for shipboard use and evaluated its performance. The system was developed to measure engine or generator cooling water by installing a canister inside the ship. The minimum detectable activity of the system is about 0.8 Bq/L for a 60 s measurement period, and real-time data transmission and remote control are possible. The system was tested in the field and is currently being installed and operated on ships in service. Such a ship-based real-time gamma-radiation measurement system is suitable for a wide range of marine radiation surveillance applications and is expected to be rapidly deployed.

초저온 방사성의약품 운송시스템 개발 (Development of Cryogenic Radiopharmaceutical Transport System)

  • 조은하;이유황
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.321-326
    • /
    • 2023
  • Radiopharmaceuticals that need to be transported in a low-temperature state must satisfy both radiation safety and proper temperature maintenance. However, an efficient transport system considering the characteristics of radiopharmaceuticals that require low temperature maintenance has not yet existed. In order to secure a transportation system for the safe and stable transportation of the radiopharmaceutical 131I mIBG, which requires transportation in cryogenic conditions, we have developed a transportation system that can maintain cryogenic conditions below -60℃ for 6 days while stably fixing the inner container. In addition, by applying a data logger that can simultaneously measure the temperature and the dose of radiation, safety and stability in the transportation process can be secured at the same time. The cryogenic transportation system for 131I mIBG will be applied to products currently being supplied, and we expect to dramatically improve the management of cold chain radioactive material transportation.

DYNAMIC WEDGE의 임상 적용 가능성에 관한 고찰

  • 김영범;정세영;황웅구
    • 대한방사선치료학회지
    • /
    • 제7권1호
    • /
    • pp.103-110
    • /
    • 1995
  • Dynamic wedge system has been introduced to modify the beam profile and to make homogeneous isodose curves in the mass of irregular shape. Before the clinical use of dynamic wedge, several factors such as wedge transmission factor, dose profile, percent depth dose, and wedge angle have to be measured quantitatively. Film dosimetry is used to evaluate these factors in this study. A comparison of the result of the dynamic wedge to physical wedge system is made. A positive result for the application of the dynamic wedge to clinic is derived even though there is a limitation in accuracy of the dosimetry system used. To measure all factors quantitatively, more accurate dosimetry systems are required.

  • PDF

Novel Dosimeter for Low-Dose Radiation Using Escherichia coli PQ37

  • Park, Seo-Hyoung;Kim, Tae-Hwan;Cho, Chul-Koo;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.524-528
    • /
    • 2001
  • The measurement of radiation response using simple and informative techniques would be of great value in studying the genetic risk following occupational, therapeutic, or accidental exposure to radiation. When patients receive radiation therapy, many suffer from side effects. Since each patient receives a different dose due to different physical conditions, it is important to measure the exact dose of radiation received by each patient to lessen the side effects. Even though several biological dosimetric systems have already been developed, there is no ideal system that can satisfy all the criteria for an idean dosimetric system, especially for low-dose radiation as used in radiation therapy. In this study, an SOS Chromotest of E. coli PQ37 was evaluated as a novel dosimeter for low-dose gamma-rays. E. coli PQ37 was originally developed to screen chemical mutagens using the SOS Chromotest-a colorimtric assay, based on the induction of ${\beta}$-galactosidase ue to DNA damage. The survival fraction of E. coli PQ37 decreased dose-dependently with an increasing dose of cobalt-60 gamma-rays. Also, a good linear correlation was found between the biological damage revealed by the ${\beta}$-galactosidase expression and the doses of gamma-rays. The expression of ${\beta}$-galactosidase activity that responded to low-dose radiation under 1 Gy was $Y=0.404+(0.089{\pm}0.3)D+(-0.018{\pm}0.16)D^2$ (Y, absorbance at 420 nm; D, Dose of irradiation) as calculated using Graph Pad In Plot and Excel. When a rabbit was fed with capsules containing an agar block embdded with E. coli PQ37 showed a linear response to the radiation doses. Accordingly, the results confirm that E. coli PQ37 can be used as a sensitive biological dosimeter fro cobalt-60 gamma-rays. To the best of our knowledge, this is the first time that a bacterium has been used as a biological dosimeter, especially for low-dose radiation.

  • PDF

방사선안전관리에 대한 조사 : 의료기관 방사선조사자를 중심으로 (Study on the safety management of radiation: centering on the radiation workers in medical institutions)

  • 한은옥;문인옥
    • 보건교육건강증진학회지
    • /
    • 제19권2호
    • /
    • pp.99-113
    • /
    • 2002
  • While the use of radiation in the medical field provides diagnosis and treatment with important benefits, we cannot deny that the radiation bombing causes some hindrances. The expansion of radiation use in modem medicine is essential, so the radiation use and preparation of proper measure for safety management has risen as a pressing subject. Therefore, in order to make defensive plans for the prevention of health obstacles to general users of radiation and for the provision of basic data of the health education programs to radiation workers by grasping the knowledge, attitude and behavior towards the radiation safety management of radiation workers in each medical institution and by analyzing the factors that affect the actions of radiation safety management, in this study we conducted questionnaires from September 26 to November 5, 2001 targeting 805 radiation workers in 108 medical institutions including university hospitals, general hospitals, hospitals, clinics and public health centers etc. located in Seoul, four metropolitan cities and small and medium cities, and has obtained the following results. 1. The average point of knowledge on the radiation safety management was 10.96 out of 15. As for the general characteristics, the level of knowledge on radiation safety management was higher with older age, high education background and longer career. 2. The average point of attitude on the radiation safety management was 66.36 out of 75. The attitude point for general characteristics were higher with higher education background, longer career and in case of universities, the level of attitude on the radiation safety management was high. 3. The average of action points on the radiation safety management was 56.09 out of 75. In general characteristics, the action level of radiation safety level was higher with older age, longer career, and the reception of radiation education and in case of university hospitals. 4. It is analyzed that the relation of knowledge, attitude and behavior on the radiation safety management is higher as the levels of knowledge and attitude on the radiation safety management is higher. 5. As a result of analyzing the factors that affect the knowledge on the radiation safety management, the variables that can be explained best was in the order of ‘the behavior on the radiation safety management’, ‘work career’, ‘the attitude on the radiation safety management’, and ‘school career’. 6. As a result of analyzing the factors that affect the attitude on the radiation safety management, the variables that can be explained best was in the order of ‘the behavior on the radiation safety management’, ‘the knowledge on the radiation safety management’, and ‘school career’. 7. As a result of analyzing the factors that affect the behavior on the radiation safety management, the variables that can be explained best was in the order of ‘the attitude on the radiation safety management’, ‘the knowledge on the radiation safety management’, and ‘the frequency of radiation education

광전도안테나에 의한 광대역테라헤르츠파의 발생특성 (Generation of Ultra-Wideband Terahertz Pulse by Photoconductive Antenna)

  • 진윤식;김근주;손채화;정순신;김지현;전석기
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.286-292
    • /
    • 2005
  • Terahertz wave is a kind of electromagnetic radiation whose frequency lies in 0.1THz $\~$10THz range. In this paper, generation and detection characteristics of terahertz (THz) radiation by photoconductive antenna (PCA) method has been described. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer. A mode-locked Ti:Sapphire femtosecond laser beam is guided and focused onto photoconductive antennas (emitter and detector) to generate and measure THz pulses. Ultra-wide band THz radiation with frequencies between 0.1 THz and 3 THz was observed. Terahertz field amplitude variation with antenna bias voltage, pump laser power, pump laser wavelength and probe laser power was investigated. As a primary application example. a live clover leaf was imaged with the terahertz radiation.