• Title/Summary/Keyword: Radiation Limits

Search Result 174, Processing Time 0.026 seconds

The Transport Characteristics of 238U, 232Th, 226Ra, and 40K in the Production Cycle of Phosphate Rock

  • Jung, Yoonhee;Lim, Jong-Myoung;Ji, Young-Yong;Chung, Kun Ho;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • Background: Phosphate rock and its by-product are widely used in various industries to produce phosphoric acid, gypsum, gypsum board, and fertilizer. Owing to its high level of natural radioactive nuclides (e.g., $^{238}U$ and $^{226}Ra$), the radiological safety of workers who work with phosphate rock should be systematically managed. In this study, $^{238}U$, $^{232}Th$, $^{226}Ra$, and $^{40}K$ levels were measured to analyze the transport characteristics of these radionuclides in the production cycle of phosphate rock. Materials and Methods: Energy dispersive X-ray fluorescence and gamma spectrometry were used to determine the activity of $^{238}U$, $^{232}Th$, $^{226}Ra$, and $^{40}K$. To evaluate the extent of secular disequilibrium, the analytical results were compared using statistical methods. Finally, the distribution of radioactivity across different stages of the phosphate rock production cycle was evaluated. Results and Discussion: The concentration ratios of $^{226}Ra$ and $^{238}U$ in phosphate rock were close to 1.0, while those found in gypsum and fertilizer were extremely different, reflecting disequilibrium after the chemical reaction process. The nuclide with the highest activity level in the production cycle of phosphate rock was $^{40}K$, and the median $^{40}K$ activity was $8.972Bq{\cdot}g^{-1}$ and $1.496Bq{\cdot}g^{-1}$, respectively. For the $^{238}U$ series, the activity of $^{238}U$ and $^{226}Ra$ was greatest in phosphate rock, and the distribution of activity values clearly showed the transport characteristics of the radionuclides, both for the byproducts of the decay sequences and for their final products. Conclusion: Although the activity of $^{40}K$ in k-related fertilizer was relatively high, it made a relatively low contribution to the total radiological effect. However, the activity levels of $^{226}Ra$ and $^{238}U$ in phosphate rock were found to be relatively high, near the upper end of the acceptable limits. Therefore, it is necessary to systematically manage the radiological safety of workers engaged in phosphate rock processing.

NIRS Analysis of Liquid and Dry Ewe Milk

  • Nunez-Sanchez, Nieves;Varo, Garrido;Serradilla-Manrique, Juan M.;Ares-Cea, Jose L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1251-1251
    • /
    • 2001
  • The routine analysis of milk chemical components is of major importance both for the management of animals in dairy farms and for quality control in dairy industries. NIRS technology is an analytical technique which greatly simplifies this routine. One of the most critical aspects in NIRS analysis of milk is sample preparation and analysis modes which should be fast and straightforward. An important difficulty when obtaining NIR spectra of milk is the high water content (80 to 90%) of this product, since water absorbs most of the infrared radiation, and, therefore, limits the accuracy of calibrating for other constituents. To avoid this problem, the DESIR system was set up. Other ways of radiation-sample interaction adapted for liquids or semi-liquids exist, which are practically instantaneous and with limited or null necessity of sample preparation: Transmission and Folded Transmission or Transflectance. The objective of the present work is to compare the precision and accuracy of milk calibration equations in two analysis modes: Reflectance (dry milk) and Folded Transmission (liquid milk). A FOSS-NIR Systems 6500 I spectrophotometer (400-2500 nm) provided with a spinning module was used. Two NIR spectroscopic methods for milk analysis were compared: a) folded transmission: liquid milk samples in a 0.1 pathlength sample cell (ref. IH-0345) and b) reflectance: dried milk samples in glass fibre filters placed in a standard ring cell. A set of 101 milk samples was used to develop the calibration equations, for the two NIR analysis modes, to predict casein, protein, fat and dry matter contents, and 48 milk samples to predict Somatic Cell Count (SCC). The calibrations obtained for protein, fat and dry matter have an excellent quantitative prediction power, since they present $r^2$ values higher than 0.9. The $r^2$ values are slightly lower for casein and SCC (0.88 and 0.89 respectively), but they still are sufficiently high. The accuracy of casein, protein and SCC equations is not affected by the analysis modes, since their ETVC values are very similar in reflectance and folded transmission (0.19% vs 0.21%; 0.16% vs 0.19% and 55.57% vs 53.11% respectively), Lower SECV values were obtained for the prediction of fat and dry matter with the folded transmission equations (0.14% and 0.25% respectively) compared to the results with the reflectance ones (0.43% and 0.34% respectively). In terms of accuracy and speed of analytical response, NIRS analysis of liquid milk is recommended (folded transmission), since the drying procedure takes 24 hours. However, both analysis modes offer satisfactory results.

  • PDF

Investigation of Technical Requirements for a Protective Shield with Lunar Regolith for Human Habitat (월면토를 이용한 달 유인 우주기지 보호층의 기술적 요구조건에 관한 연구)

  • Lee, Jangguen ;Gong, Zheng;Jin, Hyunwoo ;Ryu, Byung Hyun;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.49-55
    • /
    • 2023
  • The discovery of lunar ice in the lunar polar region has fueled international interest in in situ resource utilization (ISRU) and the construction of lunar habitats. Unlike Earth's atmosphere, the Moon presents unique challenges, including frequent meteoroid impacts, direct exposure to space radiation, and extreme temperature variations. To safeguard lunar habitats from these threats, the construction of a protective shield is essential. Lunar regolith, as a construction material, offers distinct advantages, reducing transportation costs and ensuring a sustainable supply of raw materials. Moreover, it streamlines manufacturing, integration schedules, and enables easy repairs and modifications without Earth resupply. Adjusting the shield's thickness within the habitat's structural limits remains feasible as lunar conditions evolve. Although extensive research on protective shields using lunar regolith has been conducted, unresolved conflicts persist regarding shield requirements. This study conducts a comprehensive analysis of the primary lunar threats and suggests a minimum shield thickness of 2 m using lunar regolith. Furthermore, it outlines the necessary technology for the rapid construction of such protective shields.

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

Decision of Optimum Turn Step Resolution for Extraction of the Spurious Radiation in Gigahertz Band (기가헤르쯔 대역 불요파 방사의 최대값 추출을 위한 최적 회전 스텝 분해능 결정)

  • 허민호;윤영중;정삼영;공성식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • In this paper, suitablility of 1 GHz CISPR limits establishment fur broadcast communication quality protection is examined and the optimum turn step resolution of EUT for spurious measurement of frequency above 1 GHz to increase the accuracy of maximum values extraction is examined. As a result of 500 MHz and 1.7 GHz clock speed personal computer of micro-processor measurement, optimum turn step resolution extracted by National Institution of National Instrument of Standard & Technology(NIST) Koepke method is estimated 40 table positions per polarization in 500 MHz. And in case of 1.7 GHz, step size is 36 table positions. Prediction of turn step size required for fully scan method in gjgahertz measurement will increase measurement accuracy and reduce considerable measurement time as well.

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

Systems Engineering Approach for the Reuse of Metallic Waste From NPP Decommissioning and Dose Evaluation (금속해체 폐기물의 재활용을 위한 시스템엔지니어링 방법론 적용 및 피폭선량 평가)

  • Seo, Hyung-Woo;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • The oldest commercial reactor in South Korea, Kori-1 Nuclear Power Plant (NPP), will be shut down in 2017. Proper treatment for decommissioning wastes is one of the key factors to decommission a plant successfully. Particularly important is the recycling of clearance level or very low level radioactively contaminated metallic wastes, which contributes to waste minimization and the reduction of disposal volume. The aim of this study is to introduce a conceptual design of a recycle system and to evaluate the doses incurred through defined work flows. The various architecture diagrams were organized to define operational procedures and tasks. Potential exposure scenarios were selected in accordance with the recycle system, and the doses were evaluated with the RESRAD-RECYCLE computer code. By using this tool, the important scenarios and radionuclides as well as impacts of radionuclide characteristics and partitioning factors are analyzed. Moreover, dose analysis can be used to provide information on the necessary decontamination, radiation protection process, and allowable concentration limits for exposure scenarios.

Design of the Broadband PIFA with Multi-Band for SAR Reduction (다중대역을 가지는 SAR 저감용 광대역 PIFA 설계)

  • Choi Donggeun;Shin Hosub;Kim Nam;Kim Yongki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.66-77
    • /
    • 2005
  • This paper proposed a novel broadband PIFA(Planar Inverted-F Antenna) for IMT-2000/WLAN/DMB terminal. Two branch lines for meander line were utilized in order to improve the characteristics of PIFA which usually has a narrow band. The shorting strip between the ground plane and meander-type radiation elements were used in order to minimize the size of the antenna. The -10 dB return loss bandwidth of a realized antenna was $38.2{\%}$(1.84~2.71 GHz), which contains the broadband bandwidth with triple band. And the simulated and measured values of 1 g and 10 g averaged peak SAR on human head caused by the triple band PIFA mounted on folder-type handsets were analyzed and discussed. As a result, the measured 1 g and 10 g averaged peak SARs of PIFA were similar with the simulated values and were lower than the 1.6 W/kg and 2 W/kg of 1 g and 10 g averaged peak SAR limits.

Development of Porous polyurethane Arterial-Venous Shunt by Thermal Control (온도 조절을 통한 다공성 폴리우레탄 동정맥 누관의 개발)

  • Jeong, J.S.;Ryu, G.H.;Kim, J.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.478-481
    • /
    • 1997
  • A technique or the preparation of porous polyurethane vascular prostheses was investigated. Small-diameter vessels are not in general clinical use due to their limited long-term biocompatibility and low patency rates in experimental trial. These limits are mainly due to the failure of mechanical unction of the vascular grafts. This failure has been suggested to result partially from compliance mismatch. The long-term patency is considered to depend critically on the properties of the material and the fabrication process of the graft. So the control of pores is very important and main points to develop a available vascular grafts. Two-kind polymer sheets was compared. One was the porous PU-sheet made at room temperature by the solvent/non-solvent exchange. And the other was the porous PU-sheet which was fabricated by thermal phase transition and solvent-/non-solvent exchange using the thermal controller. The polymer sheets had a uniform pore size and pore occupation. According to the result of the above experiments, polyurethane solution was injected into a mold designed or U-type tube. The average pore size and pore occupation were easily changed by changing polyurethane concentration, freezing temperature, and methods. This technique can give a proper pore size ($10{\sim}45\;{\mu}m$) or tissue in growth, and suitable compliances or matching with arteries and veins. Besides, the fabrication of more complicated shaped vessels such as the U-type vascular grafts is easily controlled by using the fixed mold. this method might give a desired compliant graft or artificial implantation with the presently valid medical polymers.

  • PDF

Review of Guidelines for Radon and Estimation of Radiation dose (라돈의 가이드라인 고찰 및 선량 예측)

  • Chung, Eun Kyo;Kim, Kab Bae;Jang, Jae Kil;Song, Se Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.109-118
    • /
    • 2016
  • Objectives: To review reference levels by the international and domestic management and provide the basis for setting occupational exposure limits(OELs) of radon in Korea Methods: Government's organizations with laws and systems for monitoring radon exposure were investigated and compared. There are five laws governing Indoor Air Quality(IAQ) control such as Occupational Safety and Health Act, Indoor Air Quality Control in Public Use Facilities, Etc. Act, School Health Act, Public Health Control Act and Parking Lot Act in Korea. It was surveyed that a total of 32 countries including 24 countries in the European Union(EU), six countries in Asian and two countries in North America setting the reference levels for radon in the world. Results: In Korea, there are set guidelines for radon in the Ministry of Environment and the Ministry of Education. Reference levels of radon for existing dwellings were $150{\sim}400Bq/m^3$ for Western European countries, and $200{\sim}1,500Bq/m^3$ in Eastern European countries. Approximately 67% of those EU countries were set up $400Bq/m^3$ to the standards for existing dwellings. EU countries such as Luxembourg, Finland, Norway, Sweden and Russia had adopted mandatory level for radon. Radon guidelines for new dwellings were set more strictly reference level($200Bq/m^3$) than existing dwellings. Conclusions: International organizations such as ICRP, UNSCEAR and NCRP, etc. had recommended the guidelines for radon. It was calculated the relation of the dose conversion factors with the annual effective doses. the OELs of radon suggest to need to establish $150Bq/m^3$ for office room and $400{\sim}1,000Bq/m^3$ for the workplace.