• Title/Summary/Keyword: Radiation Irradiation

Search Result 2,539, Processing Time 0.029 seconds

Effect of a Serial Irradiation of Low Dose Gamma Rays on the Growth and Photosynthesis of Red Pepper (Capsicum annuum L.) Plants

  • Kim, Jin-Hong;Chung, Byung Yeoup;Wi, Seung Gon;Baek, Myung-Hwa;Lee, Myung Chul;Kim, Jae-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.537-542
    • /
    • 2004
  • To reveal the relationship between the changes in the growth and photo- synthesis induced by low dose radiation, red pepper (Capsicum annuum L.) plants were serially irradiated three times with gamma rays of 0.5, 1, 2, 3, and 4 Gy. The plant growth was monitored by the fresh weight, the stem length, and the leaf length & width. All the irradiation groups (0.5-4 Gy) were stimulated in growth at 1 day after the $1^{st}$ irradiation (DA1I), but rather inhibited at 3 days after the $3^{rd}$ irradiation (DA3I). The maximum photochemical efficiency (Fv/Fm), the photochemical quenching (qP), the non-:photochemical quenching (NPQ) and the apparent rate of the photosynthetic electron transport (ETR) were used to represent the changes in the photosynthesis by the serial irradiation. The irradiation groups except 0.5 Gy had higher Fv/Fm values at 3 DA3I than the control one. After the 3$^{rd}$ irradiation, the qP values appeared to be a little lower in the 1-4 Gy groups than in the control and 0.5 Gy ones. In contrast, the NPQ values were rather higher in the irradiation groups except 0.5 Gy. During the whole experimental period, the ETRs decreased in the control group but remained relatively constant in the 4-Gy one. In conclusion, the results obtained indicate that the stimulatory effect of ionizing radiation on the plant growth was determined by the incident dose of the single irradiation rather than by the cumulative one of the serial irradiation. They also demonstrate that the growth stimulation induced by a low dose radiation could not be positively correlated with an alteration in the photosynthesis. Additionally, we discuss in text that an ionizing radiation may partly protect the leaf senescence by delaying the development of the plants.

Thoracic Re-irradiation for Locally Recurrent Lung Cancer

  • Aktan, Meryem;Kanyilmaz, Gul;Koc, Mehmet;Aras, Serhat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.5041-5045
    • /
    • 2016
  • Background: Patients with recurrent or progressive lung cancer experience a significant symptom burden, negatively affecting quality of life and reducing life expectancy. Thoracic re-irradiation can be used for palliative treatment to relieve symptoms or as a curative treatment. Methods: Using patient charts, we identified and reviewed 28 cases that had received palliative thoracic re-irradiation for recurrent lung cancer. Results: Before re-irradiation, 32% of patients had stage III non-small cell lung cancer and six had small cell lung cancer. The median interval between treatments was 18.7 months. Median follow-up was 31.2 months from the initial radiotherapy and 5 months after re-irradiation. A better performance status before re-irradiation (<80 vs >80, p=0.09) and a lower overlap 90% isodose (<70 vs >70, p=0.09) showed trends toward improved survival. Grade 1-2 toxicity from re-irradiation was recorded in 12/28 patients, and no grade 3 or 4 acute toxicity was encountered. Conclusion: The role of palliative treatment in survival is not clear but it can provide symptomatic relief in patients, with no high grade toxicity. Further studies with greater patient numbers and longer follow-up times should facilitate determination of the role of this treatment in toxicity and effects on survival.

Comparison of Skin Injury Induced by β- and γ-irradiation in the Minipig Model

  • Kim, Joong-Sun;Jang, Hyosun;Bae, Min-Ji;Shim, Sehwan;Jang, Won-Seok;Lee, Sun-Joo;Park, Sunhoo;Lee, Seung-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Background: The effects of radiation on tissues vary depending on the radiation type. In this study, a minipig model was used to compare the effects of ${\beta}$-rays from $^{166}Ho$ and ${\gamma}$-rays from $^{60}Co$ on the skin. Materials and Methods: In this study, the detrimental effects of ${\beta}$- and ${\gamma}$-irradiation on the skin were assessed in minipigs. The histopathological changes in the skin from 1 to 12 weeks after exposure to 50 Gy of either ${\beta}$- (using $^{166}Ho$ patches) or ${\gamma}$- (using $^{60}Co$) irradiation were assessed. Results and Discussion: The skin irradiated by ${\beta}$-rays was shown to exhibit more severe skin injury than that irradiated by ${\gamma}$-rays at 1-3 weeks post-exposure; however, while the skin lesions caused by ${\beta}$-rays recovered after 8 weeks, the ${\gamma}$-irradiated skin lesions were not repaired after this time. The observed histopathological changes corresponded with gross appearance scores. Seven days post-irradiation, apoptotic cells in the basal layer were detected more frequently in ${\beta}$-irradiated skin than in ${\gamma}$-irradiated skin. The basal cell density and skin thickness gradually decreased until 4 weeks after ${\gamma}$- and ${\beta}$- irradiation. In ${\beta}$-irradiated skin lesions, and the density and thickness increased sharply back to control levels by 6-9 weeks. However, this was not the case in ${\gamma}$-irradiated skin lesions. In ${\gamma}$-irradiated skin, cyclooxygenase-2 (COX-2) was shown to be expressed in the epidermis, endothelial cells of vessels, and fibroblasts, while ${\beta}$-irradiated lesions exhibited COX-2 expression that was mostly limited to the epidermis. Conclusion: In this study, ${\beta}$-rays were shown to induce more severe skin injury than ${\gamma}$-rays; however, the ${\beta}$-rays-induced injury was largely repaired over time, while the ${\gamma}$-rays-induced injury was not repaired and instead progressed to necrosis. These findings reveal the differential effects of ${\gamma}$- and ${\beta}$-irradiation on skin and demonstrate the use of minipigs as a beneficial experimental model for studying irradiation-induced skin damage.

Comparison of Microbiological Safety of Porcine Grafts on Gamma Irradiation for Use of Xenografts (돼지 유래 생체 조직의 이식재 활용을 위한 방사선 조사 미생물 제어 평가)

  • Jo, Eu-Ri;Kim, Jeongsoo;Choi, Jong-il;Kim, Jae-Hun;Sung, Nak-Yun;Song, Beom-Seok;Kim, JaeKyung;Park, Jong-Heum;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.279-283
    • /
    • 2011
  • This study was compared microbiological safety with gamma-irradiated porcine tendon and skin, as materials for the development of xenografts to regenerate damaged tissues and protect secondary contamination. The porcine tendon and skin were gamma-irradiated after inoculation of bacteria and virus to evaluate irradiation sensitivity of microorganisms. The result showed that the porcine tendon and skin were not different on the sensitivity of microorganisms by gamma irradiation. Bacteria inoculated in the porcine tendon and skin were confirmed that E. coli was the $D_{10}$ values of $0.32{\pm}0.082$ and $0.25{\pm}0.1kGy$ on tendon and skin, and B. subtilis was $4.00{\pm}0.312$ and $3.88{\pm}0.3kGy$ on gamma irradiation, respectively. Moreover, Virus inoculated in the porcine tendon and skin was observed that poliovirus (PV) was $6.26{\pm}0.332$ and $6.88{\pm}0.3kGy$, and porcine parvovirus (PPV) was $1.75{\pm}0.131$ and $1.73{\pm}0.2kGy$ and bovine viral diarrhoea virus (BVDV) was $3.70{\pm}0.212$ and $3.81{\pm}0.2kGy$ on gamma irradiation, respectively. Virus showed higher resistance compared to bacteria on gamma irradiation, but was not detected CPE (cytopathic effect) by virus both tendon and skin at 25 kGy, a standard dose recommended from IAEA for sterilization of medical products. Therefore, These results were considered that gamma irradiation could control effectively bacteria and virus to develop safe porcine xenograft, and apply same irradiation doses to all tissues including tendon and skin of porcine.

Application of Chemical Probes to Detect Superoxide Anion and Singlet Oxygen in Biological Systems during Gamma Irradiation

  • Lee, Min Hee;Cho, Eun Ju;Kim, Ji Hong;Kim, Ji Eun;Chung, Byung Yeoup;Cho, Jae-Young;Lee, Kang-Soo;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • To detect superoxide anion ($O_2{\cdot}^-$) or singlet oxygen ($^1O_2$) in biological systems during gamma irradiation, specific chemical probes, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron) or 2,2,6,6-tetramethyl-piperidine (TEMP), were evaluated. Tiron or TEMP spin adducts was structurally stable in aqueous solution during gamma irradiation up to 500 or 1,000 Gy, respectively. The signal of Tiron semiquinone radical, a spin adduct of Tiron upon reaction with $O_2{\cdot}^-$, was slightly increased by gamma irradiation. This trend was dose-dependently manifested in $O_2$-saturated aqueous solution using nitro blue tetrazolium (NBT), a common probe for both hydrated electron ($e{^-}_{aq}$) and $O_2{\cdot}^-$. In contrast, a spin adduct of TEMP, was never inducible by gamma irradiation, while its signal was substantially enhanced by photosensitization of riboflavin. These results suggest that Tiron and NBT or TEMP could be utilized to detect $O_2{\cdot}^-$ or $^1O_2$ in biological systems during gamma irradiation, although $O_2{\cdot}^-$ or $^1O_2$ are not the main reactive oxygen species produced by water radiolysis.

Effect of Concentration of Carboxymethycellulose on Degradation by Radiation (Carboxymethycellulose의 농도에 따른 방사선 분해 연구)

  • Kim, Jeongsoo;Sung, Nak-Yun;Kim, Jae-Hun;Kim, Tae-woon;Lee, Ju-Woon;Choi, Jong-il
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.385-389
    • /
    • 2010
  • In this study, the effect of the concentration of carboxymethylcellulose (CMC) solution on the degradation by irradiation was investigated. The CMC solutions with different concentrations of 3%, 4%, 5%, 6% and 7% were irradiated at the doses of 5, 10, 15, 20, 25 and 30 kGy with gamma ray or electron beam, and the viscosity of CMC solution was measured. The viscosity of the CMC solutions was decreased with an increase in the irradiation dose, but the extent of the degradation by an irradiation was found to be decreased with an increase of the CMC concentration in the solution. The dependency of the irradiation sources showed that an electron beam radiation had degraded the CMC less severely than gamma ray.

Effect of Gamma Irradiation on Microbial Populations in the Dried Raw Materials and Saengsik Powder (감마선 조사에 따른 원료분말 및 생식의 미생물 제어 효과)

  • Choi, Soo-Jeong;Park, Jae-Nam;Song, Beom-Seok;Yoon, Young-Min;Han, In-Jun;Park, Jong-Heum;Kim, Jae-Kyung;Byun, Eui-Baek;Lee, Ju-Woon;Hong, Seong-Gil;Yook, Hong-Sun;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.177-182
    • /
    • 2013
  • This study was conducted to evaluate the effect of gamma irradiation on the microbial populations of dried raw materials (9 products) and Saengsik powder. The samples were gammairradiated at doses of 2, 4, 6 and 8 kGy and the microbiological populations were evaluated. The total numbers of bacteria and Bacillus cereus in non-irradiated dried-raw materials for Saengsik powder was 1.3~3.4 and $1.7{\sim}2.4log\;CFU\;g^{-1}$. However, gamma irradiation reduced the microbiological populations in all samples, and Saengsik powder were sterilized at more than 6 kGy. Moreover, Clostridium perfringens were not observed in all samples within detection limit (<$1log\;CFU\;g^{-1}$). Therefore, the results of this study suggest that gamma irradiation at 6 kGy is sufficient to sterilize Saengsik powder, and thus, irradiated Saengsik powder at 6 kGy fulfills the microbiological requirements for sterilized food.

The Effect of Gamma Irradiation on the Survival of Lactic Acid Isolated from Commercial Daily Product (시판 유제품 중에서 분리된 젖산균의 감마선 조사에 의한 생존 효과)

  • Lee, Ji-hye;Kim, Jae-Kyung;Jo, Eu-Ri;Sung, Nak-Yun;Choi, Jong-Il;Kim, Jae-Hun;Song, Beom-Seok;Park, Jong-Heum;Yook, Hong-Sun;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.175-178
    • /
    • 2011
  • This study was conducted with effect of lactic acid bacteria by gamma irradiation. Lactic acid bacteria were exposed to irradiation with a single absorbed dose of 1, 2, 3, 4, 5, 6, 8, and 10 kGy. Possible lactic acid bacteria, including Lactobacillus paracasei KCTC 13169, Lactobacillus casei KCTC 3109, Lactobacillus acidophilus KCTC 3140, Lactobacillus plantarum subsp plantarum KCTC 3103, Lactobacillus debruekii subsp bulgaricus KCTC 3635, Streptococcus thermophilus KCTC 3658 were selected. The radiation sesitivities of lactic acid bacteria were expressed as $D_{10}$ values. The $D_{10}$ values of Lactobacillus paracasei, Lactobacillus casei, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus debruekii were calculated as 0.42, 0.51, 0.47, 0.90, 0.44, and 0.61 kGy, respectively. Results suggest that L. acidiphilus has the highly resistant to gamma irradiation.

Effect of Irradiation on the Microbial Content of Ready-to-Use Cooked Carrot

  • Byun, Myung-Woo;Lee, Na-Young;Jo, Cheo-Run;Lee, Eun-Young;Kim, Hee-Jeong;Shin, Dong-Hwa
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.138-141
    • /
    • 2007
  • The aim of this study was to investigate the effect of irradiation treatment on the inactivation of pathogens in ready-to-use cooked carrot. The pathogens tested were Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, and Listeria inocua. Following the inoculation of these organisms into cooked carrot (about $10^6-10^8\;CFU/g$), the growth of each was inhibited due to irradiation for 24 hr of storage at $20^{\circ}C$. S. typhimurium and E. coli inoculated into cooked carrot were not detected following irradiation with 3 kGy. S. aureus and L. inocua inoculated into the cooked carrot decreased by 5 logs (CFU/g) following 2 kGy irradiation. The range of $D_{10}$ values was from 0.30-0.50. The Hunter color, $L^*-,\;a^*-$, and $b^*-values$, and the hardness of the cooked carrot were not effected by irradiation treatment. The sensory score of irradiated cooked carrot was not statistically different from that of non-irradiated samples (p>0.05). These results indicate that low dose irradiation can enhance the microbial safety and extend the shelf-life of ready-to-eat foods such as cooked carrot.

Stabilization of PAN Nanofibers Using Electron Beam Irradiation and Thermal Compression Technique (전자선 조사와 열압축공정을 이용한 PAN 나노섬유의 안정화 및 특성분석)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Polyacrylonitrile (PAN)-based carbon fibers have been widely used due to their unique chemical, electrical, and mechanical properties. Electron beam irradiation has been extensively employed as means of altering properties of polymeric materials. Electron beam irradiation can induce chemical reactions in materials without any catalyst. Electron beam irradiation may be useful in accelerating the thermal compression stabilization of PAN nanofibers. To investigate the irradiation effect on PAN fibers, PAN nanofibers were irradiated by electron beam at 1,000~5,000 kGy. Irradiated and non-irradiated PAN nanofibers were heated at 180 and $220^{\circ}C$ without applying pressure for 15 min. Then 1 metric ton has been applied for 5 min. SEM images have been found that the fiber kept its morphological behavior after the hot pressing up to electron beam irradiated 1,000 kGy. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses and temperature. FT-IR spectra have been found to decrease $C{\equiv}N$ stretch band with increasing the electron beam irradiation dose. These results indicate that the modification of PAN via reactions such as cyclization is significantly enhanced by electron beam irradiation and thermal compression technique.