• Title/Summary/Keyword: Radiation Generator

Search Result 229, Processing Time 0.03 seconds

Characteristic Analysis of X-ray Device using the High Voltage Generator on Full-wave Rectification Method (전파정류방식의 고전압발생장치를 이용한 X선 기기의 특성 평가)

  • Kim, Young-Pyo;Kim, Tae-Gon;Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.516-521
    • /
    • 2009
  • X-ray system which is usefully used in diagnosis of the patient, being bombed of radioactivity is a big weak point when irradiates a X-ray to the human body so that ICRP restricted the radiation exposure tolerance of the human body. In order to reduce being bombed, the many research and development is now advanced. A lots of diagnostic X-ray machines have currently used due to the increase of occurrence efficiency of X-ray and precisely the output control by using the inverter which is a high speed switching semiconductors. For getting the confidence of the X-ray machine, the same radiation occurrence, same evaluation, and same irradiation condition are necessary when evaluates X-ray irradiation. It is the most important part for the accuracy of the test result and the patient safety. This research has produced the high voltage occurrence system of full-wave rectification method by using the LC resonance inverter, and evaluated the irradiation reproducibility in order to use it in diagnosis of the patient.

A Study on the Condition Analysis and Improvement of Domestic Medical 99Mo/99mTc Generators Self-disposal (국내 의료용 99Mo/99mTc Generator 자체 처분 지침 현황 분석 및 개선 방향에 대한 연구)

  • Ryu, Chan-Ju;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.297-303
    • /
    • 2019
  • The nuclear medicine department of a domestic medical institution uses $^{99m}TcI$, a radionuclide, from $^{99}Mo/^{99m}TcI$ Generator, to inject radioactive drugs into patients. Among the expired generators, imported from foreign countries, the medical institution implements its own disposal. Each medical institution shall satisfy the permitted in-house disposal concentration of radioactive wastes. The guidelines for self-disposal presented in Korea suggested that self-disposal can be performed 80 days after the generator is used. The purpose of these guidelines is to analyze them by comparing them with the data measured directly with the generator and to study if they are feasible. As a result, the generator with a capacity of 1,000 mCi has the longest half-life, and when tested with a high-radiation Mo(molybdenum) column, the number of days that are below the permitted concentration of body disposal with radioactive waste was 72 days and 71 days that were derived from direct column measurement. The results of the direct study confirmed that the guidelines for in-house disposal in Korea were reasonable, as there were 8 to 9 days of storage compared to the number of in-house disposal days provided in the guidelines.

A Study on the Radiative Heat Transfer Characteristics in the Fluidized Particles Layer (유동입자층에서의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.33-42
    • /
    • 1994
  • The radiative heat transfer analysis in the fluidized particles layer has important application in many technological areas such as combustion chambers at high pressure and temperature, plasma generators for nuclear fusion, MHD generator using pulverized coal and the liquid droplet radiator used to reject wasted heat from a power plant operating in space. To accurately model the radiation properties of the fluidized particles layer, it is necessary to know the radiation interchange factors of particles in each layer. But the solutions are usually not possible for the equations of radiative heat transfer because it has an inherent difficulty in treating the governing intergo- differential equations, which are derived from the remote effects of radiative heat transfer. In this study, the analysis uses the Monte Carlo simulation method with optical depth model to calculate the radiation interchange factors of particles in each layer with wall and with each other.

  • PDF

Microwave Dielectric Absorption Spectroscopy Aiming at Novel Dosimetry Using DNAs

  • Izumi, Yoshinobu;Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.21-25
    • /
    • 2017
  • Background: We are developing L-band and S-band microwave dielectric absorption systems aiming novel dosimetry using DNAs, such as plasmid DNA and genomic DNA, and microwave technology. Materials and Methods: Each system is composed of a cavity resonator, analog signal generator, circulator, power meter, and oscilloscope. Since the cavity resonator is sensitive to temperature change, we have made great efforts to prevent the fluctuation of temperature. We have developed software for controlling and measurement. Results and Discussion: By using this system, we can measure the resonance frequency, f, and ${\Delta}Q$ (Q is a dimensionless parameter that describes how under-damped an oscillator or resonator is, and characterizes a resonator's bandwidth relative to its center frequency) within about 3 minutes with high accuracy. Conclusion: This system will be expected to be applicable to DNAs evaluations and to novel dosimetric system.

Development of Good Manufacturing facility for Radiopharmaceuticals (우수방사성의약품 생산시설 개발)

  • Shin, Byung-Chul;Choung, Won-Myung;Park, San-Hyun;Lee, Kyu-Il;Park, Kyung-Bae;Park, Jin-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.145-149
    • /
    • 2003
  • Manufacturing facilities of the pharmaceuticals must meet certain level of the cleanness required so that foreign substances such as dust, moisture, heat, microorganism, or virus do not contaminate the product. In case of radiopharmaceuticals for medical treatment and diagnosis, not only should the operators and environment be protected from radiation but also need to be isolated from the foreign contaminant. Therefore, manufacturing facilities for radiopharmaceuticals must satisfy the design standards of both hot cell and clean room which are specified by GMP. However, standards of maintaining negative pressure for preventing spread of radioactive contaminant in isolated facilities conflict with the standards of maintaining positive pressure for keeping cleanness. To solve this problem, air pressure of hot cell was designed lower than in the adjacent area to meet standards of the radiation safety. To keep higher cleanness in certain part of the hot cell for filling, minimal relative positive pressure allows. In order to effectively maintain the cleanness that is required for production of Tc-99m generator, which takes 70% of whole demand of radiopharmaceuticals, the rooms placed in each side of production room are used as a buffer area and three lead hot cells are installed in production room. In this research, we established the appropriate engineered design concept for Tc-99m generator manufacturing facility, which satisfies both GMP cleanness standard for preventing particles, bacteria, other contaminants and the regulations of radiation safety for supervising and controlling the amount of radiation exposure and exhausted radioactivity. And the concept of multi-barrier buffer zones is introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room.

Radiological Risk Assessment for $^{99m}Tc$ Generator using Uncertainty Analysis (불확실성 분석을 이용한 $^{99m}Tc$ 발생기 사용의 방사선위험도 평가)

  • Jang, H.K.;Kim, J.Y.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • Recently, much attentions are paid to the risk associated with increased uses of medium size radiation sources in medical and industrial fields. In this study, radiation risks to the worker and to the general public due to $^{99m}Tc$ generator were assessed for both normal and accident conditions. Based on the event tree technique, exposure scenarios for various situations were derived. Uncertainty analysis based on the Monte-Carlo technique was applied to the risk assessment for workers and members of the public in the vicinity of the work place. In addition, sensitivity analysis was performed on each of the five independent input parameters to identify importance of the parameters with respect to the resulting risk. Because the frequencies of normal tasks are fat higher than those of accidents, the total risk associated with normal tasks were higher than the accident risk. The annual dose due to normal tasks were $0.6mSv\;y^{-1}$ for workers and $0.014mSv\;y^{-1}$ for public, while in accident conditions $3.96mSv\;y^{-1}\;and\;0.0016mSv\;y^{-1}$, respectively. Uncertainty range of accident risk was higher by 10 times than that of normal risk. Sensitivity analysis revealed that source strength, working distance and working time were crucial factors affecting risk. This risk analysis methodology and its results will contribute to establishment of risk-informed regulation for medium and large radioactive sources.

Preclinical application of 188Re-Tin colloid for treatment of mouse tumor model with peritoneal effusion

  • Jin, Yong Nan;Lee, Yong Jin;Kim, Young Joo;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.80-84
    • /
    • 2017
  • Re-188 is an excellent and practical radioisotope produced by W-188/Re-188-generator for therapy. We prepared Re-188-tin colloid for therapy of various diseases and tried to treat peritoneal effusion in animal model. Sarcoma-180 cells were injected into ICR mice to induce peritoneal effusion and the mice were grown for 3 d. Re-188-tin colloids (0.25, 0.5, and 1 mCi/mL per 30 g body weight) were injected into the mice and the mice were grown for 90 d. Planar gamma scintigraphy showed even distribution of Re-188-tin colloid radioactivity. Bax expression was found to be dose dependent to Re-188-tin colloid. Normal saline treated group showed the shortest survival time. Among the treated groups, 0.5 mCi dose group showed the longest survival time. In conclusion, Re-188-tin colloid was prepared successfully and showed the feasibility to use as a peritoneal effusion treatment in mice.

γ-ray Radiation Induced Synthesis and Characterization of α-Cobalt Hydroxide Nanoparticles

  • Kim, Sang-Wook;Kwon, Bob-Jin;Park, Jeong-Hoon;Hur, Min-Goo;Yang, Seung-Dae;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.910-914
    • /
    • 2010
  • A novel synthetic route has been developed to prepare $\alpha$-cobalt hydroxide with intercalated nitrate anions. It was successfully synthesized by $\gamma$-ray irradiation under simple conditions, i.e., air atmosphere, without base. Under $\gamma$-ray irradiation, it leads to the formation of layered cobalt hydroxynitrate compounds which have small crystalline size and have the role of a generator of hydroxyl anion. Structural and morphological characterizations were performed by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The component and thermal stability of the sample were respectively measured by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA).

Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area (방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가)

  • Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

Calculation of Dose Distribution for SBRT Patient Using Geant4 Simulation Code (Geant4 전산모사 코드를 이용한 SBRT 환자의 선량분포 계산)

  • Kang, Jeongku;Lee, Jeongok;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • The Monte Carlo based dose calculation program for stereotactic body radiotherapy was developed in this study. The Geant4 toolkit widely used in the radiotherapy was used for this study. The photon energy spectrum of the medical linac studied in the previous research was applied for the patient dose calculations. The geometry of the radiation fields defined by multi-leaf collimators were taken into account in the PrimaryGeneratorAction class of the Geant4 code. The total of 8 fields were demonstrated in the patient dose calculations, where rotation matrix as a function of gantry angle was used for the determination of the source positions. The DicomHandler class converted the binary file format of the DICOM data containing the matrix number, pixel size, endian type, HU number, bit size, padding value and high bits order to the ASCII file format. The patient phantom was constructed using the converted ASCII file. The EGSnrc code was used to compare the calculation efficiency of the material data.